SUPPORTING INFORMATION

An Amphiphilic Ionic Liquid Stabilizing Palladium Nanoparticles for Highly Efficient Catalytic Hydrogenation

Wenwen Zhu,[†] Hanming Yang,[‡] Yinyin Yu,[†] Li Hua,[†] Huan Li[†], Bo Feng, [†] and

Zhenshan Hou*^{,†}

[†] Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China

[‡] Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, Hubei Province, South-Central University for Nationalities, Wuhan, 430074, China.

Corresponding author: houzhenshan@ecust.edu.cn

1. Synthesis of ILs

Preparation of 1-Dodecyl-2-Methylimidazole

A solution of 2-methylimidazole (1.314 g, 17 mmol) in 10 mL of anhydrous THF was added to a stirred suspension of NaH (0.504 g, 21 mmol) in 8 mL of THF at room temperature. The mixture was stirred for 1 h and then a mixed solution of 1-bromododecane (4.0 g, 16 mmol) and tetrabutylammonium bromide (0.258 g, 0.8 mmol) in 10 mL THF was added. After 6 h at 40 °C, the precipitate was filtered and washed with CH₂Cl₂ (2×15 mL), and then evaporating the solvent gave 1-dodecyl-2-methylimidazole (3.8 g, Yield: 95%). $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 6.89 (1H, s, CH), 6.80 (1H, s, CH), 3.80 (2H, t, CH₂), 2.36 (3H, s, CH₃), 1.71 (2H, m, CH₂), 1.30-1.26 (18H, m, CH₂), 0.88 ppm (3H, t, CH₃).

Preparation of the Poly(ethylene glycol) Functionalized Dicationic Ionic Liquid (C₁₂Im-PEG IL)

The PEG-2000 chloride was synthesized according the our previously reported

procedure.¹ A mixture of chlorinated PEG-2000 (3.5 g, 1.7 mmol) and 1-dodecyl-2-methylimidazole (0.88 g, 3.5 mmol) was stirred at 90 °C for 72 h under 1.0 MPa nitrogen at autoclave. After the quaterization reaction of 1-dodecyl -2-methylimidazole with chlorinated PEG, then the product was washed with diethyl ether (3×2 mL) and then the solvent was evaporated at 70 °C for 2 h under vacuum to afford slightly yellow and highly viscous liquid (Scheme 1S, Yield: 99%). $\delta_{\rm H}(500$ MHz, CDCl₃; Me₄Si) 8.05 (2H, s, CH), 7.37 (2H, s, CH), 4.62 (4H, t, CH₂), 4.15 (4H, t, CH₂), 3.92 (4H, t, CH₂), 3.46-3.81 (m, PEG), 1.78 (4H, m, CH₂), 1.33-1.25 (36H, m, CH₂), 0.88 ppm (6H, t, CH₃). Found: C, 56.16; H; 9.06, N; 1.87. Calc. for C₁₂₂H₂₄₀O₄₄N₄Cl₂: C, 57.75; H, 9.47; N, 2.21%.

Scheme 1S Synthesis of the poly(ethylene glycol) functionalized dicationic C_{12} Im-PEG IL.

2. Preparation of C₁₂-PEG-C₁₂ Surfactants

A solution of PEG-2000 (3.4 g, 1.7 mmol) in 10 mL of anhydrous THF was added to a stirred suspension of NaH (0.096 g, 4.0 mmol) in 8 mL of THF at 40 °C. The mixture was stirred for 2 h and then a solution of 1-bromohexane (1.0 g, 4.0 mmol) in 10 mL THF was added. After 18 h at 40 °C, the precipitate was filtered and washed with CH₂Cl₂ (2×15 mL); and then evaporation of the solvent gave C₁₂-PEG-C₁₂ surfactant (Scheme 2S, Yield: 83%). $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 3.44-3.58 (m, PEG), 1.57 (4H, m, CH₂), 1.24-1.28 (36H, m, CH₂), 0.88 ppm (6H, t, CH₃). Found: C, 57.73; H, 9.84. Calc. for C₁₁₄H₂₃₀O₄₆: C, 58.61; H, 9.85%.

Scheme 2S Synthesis of C₁₂-PEG-C₁₂ Gemini surfactants.

3. Conductivity Measurements of the Poly(ethylene glycol) Functionalized Dicationic Ionic Liquid (C₁₂Im-PEG IL)

Generally, the critical micelle concentration (CMC) of surfactants can also be measured by conductivity measurements.^{2,3} In this paper, the conductivity of different solutions as a function of concentration was also measured using an electrical conductivity meter (DDS-307) at room temperature. As shown in Fig. 1S, the CMC of C_{12} Im-PEG IL (about 3.8×10^{-3} molL⁻¹) determined from conductivity measurements is close to the value from surface tension measurements (Fig. 5).

Fig. 1S The plots of specific conductivity *vs* the concentration of C_{12} Im-PEG IL at 25 °C.

Fig. 2S X-ray photoelectron spectra of the isolated palladium NPs.

Fig. 3S Hydrodynamic diameter of C_{12} Im-PEG IL micelles formed in the aqueous solution at the concentration of a) 4.73×10^{-3} molL⁻¹; b) 7.0×10^{-3} molL⁻¹; c) 1.03×10^{-2} molL⁻¹; d) 1.31×10^{-2} molL⁻¹, respectively. The distribution of hydrodynamic diameter was calculated from the CONTIN algorithm.

Entries	Substrates	Sub/Pd	Products	<i>t</i> [h]	Yield [%]	TOF [h ⁻¹]
1		10,000		1.5	100	12300
2		10,000		4	100	5200
3		10,000		3	100	6800
4	\bigcirc	10,000	\bigcirc	4	95	4750
5		10,000		1	100	17200
6	ОН	2,000	ОН	3	100	1430
7	ОН	5,000	ОН	4	100	2850
8		<mark>1,000</mark>	OH	<mark>5</mark>	<mark><1</mark>	nd ^b
9		5,000		10	93.3	1200
<mark>10</mark>	NO ₂	1,000	NH ₂	2	>99	1280
<mark>11</mark>	NO ₂	1,200	NH ₂	3	100	1050
12		1,000	ОН	3.5	90.6	640

Table 1S Hydrogenation of various substrates catalyzed by the aqueous colloidal suspension of palladium NPs^a

^{*a*}Reaction conditions: 1.5 mL of aqueous colloidal suspension containing 2.25×10⁻⁶ mol Pd catalyst; room temperature (25 °C); hydrogen pressure (1.0 MPa); ^{*b*}Not determined.

Reference

- 1 H. Li, Y. Qiao, L. Hua and Z. Hou, ChemCatChem, 2010, 2, 1165–1170.
- 2 K. Din, M. S. Sheikh and A. A. Dar, J. Phys. Chem. B, 2010, 114, 6023-6032.
- 3 P. Carpena, J. Aguiar, P. Bernaola-Galván and C. C. Ruiz, *Langmuir*, 2002, **18**, 6054–6058.