Supplementary Material for PCCP This journal is © The Owner Societies 2011

## Vibrational properties of noble gas endohedral fullerenes

Electronic Supplementary Information

5



Figure 1. Raman spectra of (a) $C_{60}$ , (b) $Ar@C_{60}$  and (c) $Kr@C_{60}$ . The vibration modes of  $C_{60}$  cage are indicated by arrows.



Figure 2. infrared spectra of (a) $C_{60}$ , (b) $Ar@C_{60}$  and (c) $Kr@C_{60}$ . The vibrations of  $C_{60}$  cage are indicated by arrows.

## A selective analysis of $H_{\rm g}$ vibration modes.

Without a full quantitative modeling, we will sketch the principle of treating the other modes in terms of spherical harmonics decomposition. As extrapolation, the shift pattern in  $H_g$  and  $T_{lu}$  will be understood as having the same causal roots, as function of radial vs. tangential movements, similarly to the  $A_g$  simpler case.

The radial components can be ascribed as the modulation of the radial  $A_g$  reference with symmetry adapted spherical harmonics:

$$q(l,\Gamma\alpha)_{R} = \sum_{i=1}^{60} \left( \sum_{m} \sigma_{\alpha}^{lm} Y_{lm}(\theta_{i},\varphi_{i}) \right) \cdot \frac{d}{dR} \{ x_{i}, y_{i}, z_{i} \}$$

$$(8)$$

<sup>10</sup> The coefficients  $\sigma_{\alpha}^{lm}$  are obtained from a  $Y_{lm}$  set the combination behaving as a given representation of the point group, namely  $H_g$  in our case. The index  $\alpha$  is labeling the components of the given  $\Gamma$ representation. There are several procedures and conventions to derive symmetry adapted functions.<sup>1</sup> A convenient recipe for  $\sigma_{\alpha}^{lm}$  values, circumventing the complicate algebra, is the corresponding selection among the eigenvectors of the following matrix:

$$T_{mk}^{l} = \sum_{i} Y_{lm}^{*}(\boldsymbol{\theta}_{i}, \boldsymbol{\varphi}_{i}) Y_{lk}(\boldsymbol{\theta}_{i}, \boldsymbol{\varphi}_{i}) \quad , \tag{9}$$

taken at each *l* case. The spherical functions evaluated at the  $\theta_i$ ,  $\varphi_i$ , polar coordinates of each atom in the cluster form the coefficient defining the amplitude and orientation of the local radial vector. The spherical harmonics were ascribed in their standard form, but in fact is convenient to work with the real definitions, converting the  $Exp(im\varphi)$  factor in the Sine and Cosine components,  $Y_{l|m|}^s$  and  $Y_{l|m|}^c$ . In a

<sup>20</sup> reasonable conceptual picture, the analytical description can be confined to the minimal set containing the desired three radial  $H_g$  components, namely l = 2, l = 4 and l = 6.

The modeling of the tangential *H<sub>e</sub>* modes is more complex. We call here the apparatus of Tensor Surface Harmonics (TSH).<sup>[2,Error! Bookmark not defined.c]</sup> The TSH is a symmetry analysis apparatus, with applications in the electron structure<sup>[3]</sup> and vibrations<sup>[4]</sup> of clusters. The first order TSH, namely <sup>25</sup> the vector surface harmonics, are defined as derivatives of spherical harmonics with respect of polar coordinates:

$$q(l,\Gamma\alpha)_{V} = \sum_{i=1}^{60} \sum_{m} \sigma_{\alpha}^{lm} \left[ \left( \frac{\partial}{\partial \theta} Y_{lm}(\theta_{i},\varphi_{i}) \right) \cdot \vec{\xi}(\theta_{i},\varphi_{i}) + \left( \frac{\partial}{\partial \varphi} Y_{lm}(\theta_{i},\varphi_{i}) \right) \cdot \vec{\zeta}(\theta_{i},\varphi_{i}) \right] \quad (10.a)$$

$$\overline{q}(l,\Gamma\alpha)_{\overline{V}} = \sum_{i=1}^{60} \sum_{m} \overline{\sigma}_{\alpha}^{lm} \left[ \left( \frac{\partial}{\partial \theta} Y_{lm}(\theta_{i},\varphi_{i}) \right) \cdot \vec{\zeta}(\theta_{i},\varphi_{i}) - \left( \frac{\partial}{\partial \varphi} Y_{lm}(\theta_{i},\varphi_{i}) \right) \cdot \vec{\xi}(\theta_{i},\varphi_{i}) \right] \quad (10.b)$$

where the tangential unit vectors are:

15

$$\boldsymbol{\xi}(\boldsymbol{\theta}_{i},\boldsymbol{\varphi}_{i}) = \left\{ \cos(\boldsymbol{\theta}_{i})\cos(\boldsymbol{\varphi}_{i}), \cos(\boldsymbol{\theta}_{i})\sin(\boldsymbol{\varphi}_{i}), -\sin(\boldsymbol{\theta}_{i}) \right\}$$
(11.a)  
$$\boldsymbol{\xi}(\boldsymbol{\theta}_{i},\boldsymbol{\varphi}_{i}) = \left\{ -\sin(\boldsymbol{\varphi}_{i}), \cos(\boldsymbol{\varphi}_{i}), 0 \right\} .$$
(11.b)

The  $q(l,\Gamma\alpha)_V$  functions are drawn from the so-called even vector harmonics,  $V_{lm}$ , possessing the same point group symmetries as the corresponding scalar  $Y_{lm}$  spherical harmonics. Qualitatively, the  $V_{lm}$ , vectors can be described as fluxes on the sphere surface, exiting from positive extremes and flowing toward negative minima of the  $Y_{lm}$  functions, having maximal amplitudes at the crossing of nodal borders. The functions denoted by  $\overline{q}(l,\Gamma\alpha)_{\overline{V}}$  arise from companions called odd vector harmonics,  $\overline{V}_{lm}$ . In the case of  $I_h$  point group, their representations have reverted parity than the congener  $V_{lm}$  and  $Y_{lm}$  sets (namely  $H_u$ , instead of  $H_g$ ). The pictorial description of  $V_{lm}$  suggests curl

Supplementary Material for PCCP This journal is © The Owner Societies 2011

vortices around the extremes points of the spherical harmonics, with different orientation, as function of the sign of  $Y_{lm}$  on the surface. The modes formed with even vector harmonics can be taken within the same count as the radial case, i.e. from the l = 2, l = 4 and l = 6 sets. The two remaining tangential modes can be considered as matched by odd vector harmonics. Due to reverted parity incorporated in s the transformation, the  $H_g$  vibrations must be acquired from odd angular numbers, namely l = 5 and l =7 (that match  $H_u$  in the  $Y_{lm}$  sets). Besides, the accurate description may require also ingredients from the second order TSH derivatives.

A different strategy to complete the  $H_g$  list with the last two components (instead of the l = 5 and l = 7 odd vector harmonics) is the modulation of tangential  $A_g$  mode with spherical harmonics (i.e. <sup>10</sup> function of the  $\tau$  parameter):

$$q(l,\alpha)_{\tau} = \sum_{i=1}^{60} \left( \sum_{m} \sigma_{\alpha}^{lm} Y_{lm}(x_i, y_i, z_i) \right) \cdot \frac{d}{d\tau} \{ x_i, y_i, z_i \} .$$

$$(12)$$

By symmetry reasons, this kind of function can target the simulation of two tangential modes only, which is sufficient for our purpose. This is because the given coordinates should span the same

representation as the edges in the icosahedron, which contains only two  $H_g$  components. These  $\tau$  dependent functions can be regarded as a combination between first and higher orders in TSH expansion.

Due to difficulties in handling vector harmonics of higher order we confined here to the explicit use of simplest even vector harmonics set, l = 2, altogether with the above defined <sup>20</sup> modulation of the tangential  $A_g$  movements. We do not aim the complete analytical decomposition, confining ourselves in checking the presence of the mentioned components.

The lowest  $H_g$  mode presents as about 73% radial l = 2 spherical harmonics and 26% even l = 2 vector harmonics, as illustrated in Figure 3. The second  $H_g$  mode is almost completely spanned by the radial l = 4 component (see Figure 4). The third  $H_g$  consists in 78% radial l = 6 function. <sup>25</sup> Noticeably, the fourth  $H_g$  vibration shows 78% l = 2 stretch component (made with the help of  $\tau$  parameter derivatives, depicted in Figure 5).

Thus, the radial nature of the lowest vibrations and the nice ordering with respect of l number of the spherical harmonics description is analytically noticed. A numerical experiment showed that the decoupled radial and tangential modes produce low frequencies close to those of radial  $A_g$  vibration.

<sup>30</sup> Even though the first mode is mainly radial, the 26% tangential mixture is crucial to achieve the lowest frequency. As corollary of actual discussion, we suggest promising further advances in conceiving a new type of force field explicitly based on the radial vs. tangential dichotomy (instead of the regular neighbour bond parameters expansions<sup>5</sup>). Here we confined ourselves to a quantitative modeling of  $A_g$ modes, the semiquantitative extrapolation on the  $H_g$  ones, pointing in addition that the  $T_{Iu}$  case follows a similar qualitative principle

<sup>35</sup> a similar qualitative principle.





**Figure 3** Selected members with l=2 parentage for radial (spherical harmonics,  $Y_{20} \propto z^2$  and  $Y_{22}^c \propto x^2 - y^2$ ) and tangential (vector surface harmonics,  $V_{20}$  and  $V_{22}^c$ ) components in the lowest  $H_g$  vibration. The colors on the sinner sphere represent the sign (blue-positive, green-negative) of the selected spherical harmonics component. The length of arrows on the sphere is proportional with the magnitude of the Y or V functions. Their orientation depends on the Y sign and nodes. The radial or tangential displacement of the cluster atoms is proportional with the Y or V functions, respectively, at the atom polar coordinates.



**Figure 4.** Selected symmetry adapted components (*a* and *b* are arbitrary labels) of the radial mode with  $Y_{4m}$  definition, preponderantly forming the second  $H_g$  vibration. The colors and arrows on the sphere depicted inside denote the sign and magnitude of the spherical functions. The displacements of the C<sub>60</sub> atoms parallel the spherical function at the given position.



**Figure 5.** The bond stretch mode with  $Y_{20}$  and  $Y_{22}^{c}$  type modulation of the tangential  $A_g$  function, mainly forming the fourth  $H_g$  vibration.

15

- [<sup>1</sup>] a) N. V. Cohan, Proc. Cambridge Philos. Soc. 1958, 54, 28; b) P. W. Fowler, A. Ceulemans, Molec. Phys., 1985, 54, 767; c) A. Y. Li, M. Z. Liao, Int. J. Quantum Chem. 2001, 83, 286-302.
- <sup>[2]</sup> a) A. J. Stone, *Mol. Phys.* **1980**, *41*, 1339-1354; b) A. J. Stone, *Inorg. Chem.* **1981**, *20*, 563-571.
- [<sup>3</sup>] a) D. M. P. Mingos, Nature 1990, 345, 113-114. b) D. M. P. Mingos, R. L. Johnston, Struct. Bonding 1987, 68, 29-87; c) A. Ceulemans, G. Mys, Chem. Phys. Lett. 1994, 219, 274-278.
- [<sup>4</sup>] a) S. F. A. Kettle, E. Diana, R. Rossetti, P. L. Stanghellini *Inorg. Chem.* 1998, 37, 6502-6510; b) A. Ceulemans, P. W. Fowler, I. Vos J. Chem. Phys. 1994, 100, 5491-5500.
- [5] a) Z. C. Wu, D. A. Jelski, T. F. George, Chem. Phys. Lett. 1987, 137, 291; b) R. A. Jishi, R. M. Mirie, M. S. Dresselhaus, Phys. Rev. B 1992, 45, 13685; c) A. Ceulemans, B. C. Titeca, L. F. Chibotaru, I. Vos, P. W. Fowler, J. Phys. Chem. A 2001, 105, 8284; d) I. D. Hands, J. L. Dunn C. A. Bates, J. Chem. Phys. 2004, 120, 6912- 6921.