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Derivation of the equilibrium distribution of linear aggregates of

nanoparticles

Using the Flory-Huggins approximation, the equilibrium size distribution of linear nanoparticle

assemblies is derived by statistical mechanics. Our conclusions agree with the results of Björling

et al. (J. Chem. Phys. 1999, 111, 6884) for the entropy and Gibbs free energy of mixing of

athermal hard spheres with large size-asymmetry.

The total free energy of a system containing nanoparticles (NPs) is given by:

Gtotal = µNPNNP +µsNs (1)

Here µ is the chemical potential and N the number of nanoparticles (NP) or solvent molecules (s).

For single particles, this can be rewritten as:

Gtotal = µ
0
NPNNP +µ

0
s Ns +∆mH −T ∆mS (2)

Here µ0 is the chemical potential of a reference system containing only single nanoparticles or

solvent molecules, and the change in free energy due to the mixing of these pure systems is de-

scribed by ∆mH and ∆mS, namely, the enthalpy and entropy of mixing. Assuming that the mixing

enthalpy is zero, the change in free energy purely originates from ∆mS. This assumption is reason-

able because both the capping ligands at the surface of the nanoparticles and the solvent molecules

have a comparable dielectric constant (εDecalin = 2.2, εOleicAcid = 2.3), so that the solvent-solvent,

the ligand-solvent and the ligand-ligand Van der Waals interactions should all be similar to each

other (per unit volume), resulting in a nanoparticle-solvent mixing enthalpy of zero. Moreover,

the adsorbed ligand-solvent interactions (per unit volume) are similar for clusters and for single

particles, so that the ligand-solvent interactions remain largely unchanged upon cluster formation.

Therefore, the nanoparticle-solvent mixing enthalpy is not expected to appear in the final equations

that describe cluster formation.
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The mixing entropy is defined as the difference in the entropy before and after mixing of the 2

pure systems:

∆mS = Smixed −Spure (3)

The entropy of the pure systems is the sum of the entropy of the separate systems, SNP and Ssolvent .

The entropy can be obtained from the number of possible indistinguishable configurations of NNP

single nanoparticles on a lattice, W , using Boltzmann’s equation (kB is the Boltzmann constant):

S = kB ln(W ) (4)

The number of configurations of a system is calculated based on a lattice model with N lattice sites

and a lattice constant comparable to the size of a solvent molecule. A nanoparticle fills Q lattice

sites.

For a system with Ns solvent molecules, the pure system is described by a lattice with N = Ns

lattice sites. There is but one indistinguishable configuration (W = 1). The entropy of the pure

solvent system therefore is:

Ssolvent = kB ln(1) = 0 (5)

For the pure NP system, the number of configurations of NNP NPs on a lattice with N = QNNP

lattice sites is:

W =(N)(N −Q)(N −2Q)...(N − (NNPQ+1))/NNP!

=
QNNPNNP!

NNP!
= QNNP (6)

So the entropy of the pure NP system becomes SNP = NNPkB ln(Q). The total entropy of the pure

phases thus is:

Spure = Ssolvent +SNP = 0+NNPkB ln(Q) = NNPkB ln(Q) (7)

The entropy of the mixed system is calculated in a similar way as for the pure systems. For
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a system containing NNP nanoparticles and Ns solvent molecules, the total lattice size is N =

QNNP+Ns. The number of configurations in this system is calculated by evaluating the number of

indistinguishable ways to place first the NPs and to fill the remaining lattices sites with the solvent

molecules:

W =(N)(N −Q)(N −2Q)....(N − (NNP −1)Q)(N −NNPQ)×

(N −NNPQ−1)...(1)/(NNP!Ns!)

=

[
NNP

∏
n=1

Ns +Qn

]
Ns!/(NNP!Ns!)

=
QNNP

(
N
Q

)
!(

N
Q −NNP

)
!NNP!

(8)

The entropy of the mixed phase thus becomes:

Smixed = kB ln
QNNP

(
N
Q

)
!(

N
Q −NNP

)
!NNP!

(9)

Combining this with Eqs. (2), (3) and (7) and using the Stirling approximation (ln(N!) =N ln(N)−

N) results in:

Gtotal = µ
0
NPNNP +µ

0
s Ns + kBT

[
Ns

Q
ln
(

Ns

Ns +QNNP

)
+NNP ln

(
QNNP

Ns +QNNP

)]
(10)

The chemical potential of the NPs is defined as:

µNP =

(
∂Gtotal

∂NNP

)
NS

(11)

Using Eqs. (10) and (11) the chemical potential of the nanoparticles becomes:

µNP = µ
0
NP + kBT ln(φNP) (12)
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Here the surface fraction φNP is defined as QNNP/N. This chemical potential is for single particles

in a solvent. The chemical potential of dimers can be estimated as being particles with an area of

twice the area of a single particle. The rotational entropy is not taken into account explicitly, but

is considered part of µ0. By following the procedure described above, the chemical potential of a

dimer becomes:

µD = µ
0
D + kBT ln(φD) (13)

This can be extended to chains containing n nanoparticles:

µn = µ
0
n + kBT ln(φn) (14)

In chemical equilibria, the chemical potentials of the products balance those of the reactants ac-

cording to the reaction stoichiometry, which holds also for nanoparticle self-assembly (µn = nµ1).

Combining this with Eq. (14) we can write for the equilibrium constant K:

K =
φn

φ n
1
= exp

(
nµ0

1 −µ0
n

kBT

)
= exp

(
−∆G0

kBT

)
(15)

Assuming a similar free energy change for attaching a particle to a chain as for two particles

forming a dimer, ∆G0 = (n−1)∆G0
2, were ∆G0

2 is the pair free energy, Eq. (15) can be rewritten as

follows:

ln(φn) = n
(

ln(φ1)−
∆G0

2
kBT

)
+

∆G0
2

kBT
(16)
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Alternative CLD representation
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Figure S1: An alternative way to plot the CLD. In this plot the interaction free energy follows

from the slope, according to the equation below. Within error, the values agree with analysis on

the basis of equation 16. The first plot shows the data of the 6 nm particles and the second plot the

data of the 11nm particles.

ln(φn)

n
− ln(φ1) =−

(
1− 1

n

)
∆G0

2
kBT

(17)
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Additional experimental data
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Figure S2: Radial distribution functions of PbSe nanocrystals with a diameter of 6 nm (top) and

11 nm (bottom). The dashed lines represent the effective particle diameter(2rQD) and the arrows

represent the cutoff distance(Rco). For the 6 nm NPs, 2rQD = 9 nm and Rco = 11 nm, and for the 11

nm NPs, 2rQD = 14 nm and Rco = 18 nm.
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Figure S3: Chain length distribution curves for 11 nm PbSe NPs at different temperatures. Each

curve is measured from a single image.
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Cryo-TEM images

A B

C D

E

Figure S4: Selected cryo-TEM images of 6 nm PbSe NPs in decalin taken at (a) 5 ◦C, (b) 10 ◦C,

(c) 20 ◦C, (d) 30 ◦C, and (e) 40 ◦C.
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C D

Figure S5: Selected Cryo-TEM images of 11 nm PbSe NPs in decalin taken at (a) 5 ◦C, (b) 10 ◦C,

(c) 20 ◦C, and (d) 40 ◦C. Aggregates as shown in (a) do not influence the calculation of the pair

free energy.

10

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011


