Supporting Information for Non-Classical Diffusion in Ionic Liquids

Alasdair W. Taylor,^a Peter Licence^{*a} and Andrew P. Abbott^{*b}

^aSchool of Chemistry, The University of Nottingham, Nottingham NG7 2RD, UK

^bDepartment of Chemistry, University of Leicester, Leicester LE1 7RH, UK

*To whom correspondence should be addressed:

peter.licence@nottingham.ac.uk

Tel: +44 115 8466176

$[FcC_1C_1Im][Tf_2N]$ in $[C_4C_1Im][Tf_2N]$

Figure S1 CVs obtained at WE1 in a 4.59 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_4C_1Im][Tf_2N]$, v ranged from 25-500 mV s⁻¹, T = 298 K, $p = 5 \times 10^{-6}$ mbar.

Figure S2 Randles-Sevçik plots of $i_{p,a}$ and $i_{p,c}$ vs. $v^{1/2}$ at T = 298 K(-), 313 K (-), 330 K (-), 348 K (-) and 363 K (-).

Figure S3 Cottrell plots generated from the chronoamperometric curves obtained at WE2 in a 4.74 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_4C_1Im][Tf_2N]$, T = 298 K (—), 313 K (—), 330 K (—), 348 K (—) and 363 K (—), $p = 5 \times 10^{-6}$ mbar.

Table S1 Diffusion coefficients obtained for the oxidised and reduced forms of $[FcC_1C_1Im][Tf_2N]$ in $[C_4C_1Im][Tf_2N]$ using CV and chronoamperometry recorded at different temperatures.

	$D_{ m RS}$	$D_{ m RS}$	D_{Cott}	$D_{ m Cott}$
<i>Т /</i> К	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$
-	imes 10 ⁻⁷ cm ² s ⁻¹			
298	0.74 ± 0.03	0.62 ± 0.02	1.09 ± 0.06	1.00 ± 0.05
313	1.25 ± 0.04	1.12 ± 0.04	1.73 ± 0.08	1.50 ± 0.07
330	2.06 ± 0.08	1.69 ± 0.07	2.68 ± 0.12	2.40 ± 0.11
348	3.58 ± 0.14	2.85 ± 0.11	3.87 ± 0.18	3.66 ± 0.17
363	5.10 ± 0.19	4.19 ± 0.17	5.73 ± 0.26	6.36 ± 0.29

$[FcC_1C_1Im][Tf_2N]$ in $[C_8C_1Im][Tf_2N]$

Figure S4 CVs obtained at WE1 in a 4.88 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_8C_1Im][Tf_2N]$, v ranged from 25-500 mV s⁻¹, T = 298 K, $p = 5 \times 10^{-6}$ mbar.

Figure S5 Randles-Sevçik plots of $i_{p,a}$ and $i_{p,c}$ vs. $v^{1/2}$ at T = 298 K(-), 313 K (-), 330 K (-), 348 K (-) and 363 K (-).

Figure S6 Cottrell plots generated from the chronoamperometric curves obtained at WE2 in a 4.34 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_8C_1Im][Tf_2N]$, T = 298 K (—), 313 K (—), 330 K (—), 348 K (—) and 363 K (—), $p = 5 \times 10^{-6}$ mbar.

Table S2 Diffusion coefficients obtained for the oxidised and reduced forms of $[FcC_1C_1Im][Tf_2N]$ in $[C_8C_1Im][Tf_2N]$ using CV and chronoamperometry recorded at different temperatures.

	$D_{ m RS}$	$D_{ m RS}$	$D_{ m Cott}$	$D_{ m Cott}$
<i>Т /</i> К	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$
	$ imes 10^{\text{-7}}\text{cm}^2\text{s}^{\text{-1}}$	$ imes 10^{\text{-7}}\text{cm}^2\text{s}^{\text{-1}}$	$ imes 10^{\text{-7}}\mathrm{cm^2s^{\text{-1}}}$	$ imes 10^{\text{-7}}\mathrm{cm^2}\mathrm{s^{\text{-1}}}$
298	0.37 ± 0.01	0.27 ± 0.01	0.68 ± 0.03	0.63 ± 0.03
313	0.70 ± 0.03	0.54 ± 0.02	1.50 ± 0.07	0.92 ± 0.05
330	1.27 ± 0.05	0.97 ± 0.04	1.89 ± 0.09	1.61 ± 0.08
348	2.43 ± 0.09	1.93 ± 0.08	3.44 ± 0.16	2.76 ± 0.13
363	3.55 ± 0.15	2.89 ± 0.12	4.55 ± 0.22	3.89 ± 0.18

A2.1 $[FcC_1C_1Im][Tf_2N]$ in $[C_2C_1Im][BF_4]$

Figure S7 CVs obtained at WE1 in a 4.56 mM solution of [FcC1C11m][Tf2N] in [C2C11m][BF4], v ranged from 25-500 mV s-1, T = 298 K, $p = 5 \times 10-6$ mbar.

Figure S8 Randles-Sevçik plots of $i_{p,a}$ and $i_{p,c}$ vs. $v^{1/2}$ at T = 298 K(-), 313 K (-), 330 K (-), 348 K (-) and 363 K (-).

Figure S9 Cottrell plots generated from the chronoamperometric curves obtained at WE2 in a 4.36 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_2C_1Im][BF_4]$, T = 298 K (—), 313 K (—), 330 K (—), 348 K (—) and 363 K (—), $p = 5 \times 10^{-6}$ mbar.

Table S3 Diffusion coefficients obtained for the oxidised and reduced forms of $[FcC_1C_1Im][Tf_2N]$ in $[C_2C_1Im][BF_4]$ using CV and chronoamperometry recorded at different temperatures.

	$D_{\rm RS}$	$D_{\rm RS}$	D _{Cott}
<i>T /</i> K	[FcC ₁ C ₁ Im] ⁺	$[Fc^+C_1C_1Im]^{2+}$	[FcC ₁ C ₁ Im] ⁺
	$ imes 10^{\text{-7}}\text{cm}^2\text{s}^{\text{-1}}$	$ imes 10^{\text{-7}}\text{cm}^2\text{s}^{\text{-1}}$	$ imes 10^{\text{-7}}\text{cm}^2\text{s}^{\text{-1}}$
298	1.19 ± 0.04	0.99 ± 0.04	1.62 ± 0.07
313	2.08 ± 0.07	1.74 ± 0.06	2.66 ± 0.12
330	3.26 ± 0.12	2.92 ± 0.11	4.18 ± 0.19
348	5.55 ± 0.20	4.55 ± 0.17	8.62 ± 0.40
363	7.87 ± 0.30	6.11 ± 0.23	11.24 ± 0.50

[FcC₁C₁Im][Tf₂N] in [C₄C₁Im][BF₄]

Figure S10 CVs obtained at WE1 in a 4.66 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_4C_1Im][BF_4]$, v ranged from 25-500 mV s⁻¹, T = 298 K, $p = 5 \times 10^{-6}$ mbar.

Figure S11 Randles-Sevçik plots of $i_{p,a}$ and $i_{p,c}$ vs. $v^{1/2}$ at T = 298 K (—), 313 K (—), 330 K (—), 348 K (—) and 363 K (—).

<i>Т /</i> К	$D_{ m RS} [m FcC_1C_1Im]^+ \ imes 10^{-7} m cm^2 s^{-1}$	$D_{ m RS}$ [Fc ⁺ C ₁ C ₁ Im] ²⁺ × 10 ⁻⁷ cm ² s ⁻¹
298	0.49 ± 0.02	0.38 ± 0.01
313	0.76 ± 0.03	0.62 ± 0.02
330	1.42 ± 0.05	1.16 ± 0.04
348	2.63 ± 0.10	2.08 ± 0.08
363	3.7 ± 0.14	3.15 ± 0.12

Table S4 Diffusion coefficients obtained for the oxidised and reduced forms of $[FcC_1C_1Im][Tf_2N]$ in $[C_4C_1Im][BF_4]$ using CV recorded at different temperatures.

[FcC₁C₁Im][Tf₂N] in [C₈C₁Im][BF₄]

Figure S12 CVs obtained at WE1 in a 4.66 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_8C_1Im][BF_4]$, v ranged from 25-500 mV s⁻¹, T = 298 K, $p = 5 \times 10^{-6}$ mbar.

Figure S13 Randles-Sevçik plots of $i_{p,a}$ and $i_{p,c}$ vs. $v^{1/2}$ at T = 298 K (—), 313 K (—), and 330 K (—).

Figure S14 Cottrell plots generated from the chronoamperometric curves obtained at WE2 in a 4.36 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_8C_1Im][BF_4]$, T = 298 K (—), 313 K (—), 328 K (—), 348 K (—) and 363 K (—), $p = 5 \times 10^{-6}$ mbar.

Table S5 Diffusion coefficients obtained for the oxidised and reduced forms of $[FcC_1C_1Im][Tf_2N]$ in $[C_8C_1Im][BF_4]$ using CV and chronoamperometry recorded at different temperatures.

	$D_{ m RS}$	$D_{ m RS}$	$D_{ m Cott}$	$D_{ m Cott}$	
<i>Т /</i> К	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$	
	$ imes 10^{-8}cm^2s^{-1}$	$ imes 10^{-8}cm^2s^{-1}$	$ imes 10^{ ext{-8}} ext{cm}^2 ext{s}^{ ext{-1}}$	$ imes 10^{-8}cm^2s^{-1}$	
298	1.2 ± 0.1	0.9 ± 0.1	1.9 ± 0.1	1.4 ± 0.1	
313	2.8 ± 0.1	2.1 ± 0.1	3.8 ± 0.2	3.0 ± 0.1	
330	5.4 ± 0.2	4.0 ± 0.2	8.1 ± 0.4	6.7 ± 0.3	
348	-	-	15.7 ± 0.7	12.9 ± 0.6	
363	-	-	27.8 ± 1.3	21.4 ± 1.0	

[FcC₁C₁Im][Tf₂N] in [C₄C₁Im][PF₆]

Figure S15 CVs obtained at WE1 in a 4.20 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_4C_1Im][PF_6]$, v ranged from 25-500 mV s⁻¹, T = 298 K, $p = 5 \times 10^{-6}$ mbar.

Figure S16 Randles-Sevçik plots of $i_{p,a}$ and $i_{p,c}$ vs. $v^{1/2}$ at T = 298 K (—), 313 K (—), 330 K (—), 348 K (—) and 363 K (—).

Figure S17 Cottrell plots generated from the chronoamperometric curves obtained at WE2 in a 4.38 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_4C_1Im][PF_6]$, T = 298 K (—), 318 K (—), 330 K (—), 348 K (—) and 363 K (—), $p = 5 \times 10^{-6}$ mbar.

Table S6 Diffusion coefficients obtained for the oxidised and reduced forms of $[FcC_1C_1Im][Tf_2N]$ in $[C_4C_1Im][PF_6]$ using CV and chronoamperometry recorded at different temperatures.

	מ	מ	0	ח
	$D_{\rm RS}$	$D_{\rm RS}$	$D_{\rm Cott}$	$D_{\rm Cott}$
Т / К	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$
	$ imes 10^{-8}cm^2s^{-1}$	$ imes 10^{-8}cm^2s^{-1}$	$ imes 10^{-8}\mathrm{cm^2~s^{-1}}$	$ imes 10^{-8}cm^2~s^{-1}$
298	1.9 ± 0.1	1.3 ± 0.1	2.6 ± 0.1	2.7 ± 0.2
313	4.1 ± 0.1	3.3 ± 0.1	-	-
318	-	-	6.0 ± 0.3	6.0 ± 0.3
330	7.7 ± 0.3	6.5 ± 0.2	10.6 ± 0.5	10.1 ± 0.5
348	14.5 ± 0.5	13.0 ± 0.5	19.9 ± 1.0	18.7 ± 0.8
363	24.6 ± 0.9	19.9 ± 0.8	31.2 ± 1.4	28.6 ± 1.3

[FcC₁C₁Im][Tf₂N] in [C₈C₁Im][PF₆]

Figure S18 CVs obtained at WE1 in a 4.74 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_8C_1Im][PF_6]$, v ranged from 25-500 mV s⁻¹, T = 298 K, $p = 5 \times 10^{-6}$ mbar.

Figure S19 Randles-Sevçik plots of $i_{p,a}$ *and* $i_{p,c}$ *vs.* $v^{1/2}$ *at* T = 298 K (—), 313 K (—), 330 K (—) *and* 348 K (—).

Figure S20 Cottrell plots generated from the chronoamperometric curves obtained at WE2 in a 4.42 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_8C_1Im][PF_6]$, T = 298 K (—), 313 K (—), 330 K (—), 348 K (—) and 363 K (—), $p = 5 \times 10^{-6}$ mbar.

Table S7 Diffusion coefficients obtained for the oxidised and reduced forms of $[FcC_1C_1Im][Tf_2N]$ in $[C_8C_1Im][PF_6]$ using CV and chronoamperometry recorded at different temperatures.

	$D_{ m RS}$	$D_{ m RS}$	$D_{ m Cott}$	$D_{ m Cott}$	
<i>Т /</i> К	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$	
	$ imes 10^{ ext{-8}} ext{cm}^2 ext{s}^{ ext{-1}}$	$ imes 10^{ ext{-8}} ext{cm}^2 ext{s}^{ ext{-1}}$	$ imes 10^{-8}\mathrm{cm^2~s^{-1}}$	$ imes 10^{-8}cm^2s^{-1}$	
298	0.6 ± 0.1	0.5 ± 0.1	0.9 ± 0.1	0.7 ± 0.1	
313	1.4 ± 0.1	1.2 ± 0.1	2.0 ± 0.1	1.8 ± 0.1	
330	3.3 ± 0.1	2.8 ± 0.1	4.5 ± 0.2	4.5 ± 0.2	
348	7.6 ± 0.3	6.6 ± 0.3	8.8 ± 0.4	9.1 ± 0.4	
363	-	-	14.7 ± 0.7	14.9 ± 0.7	

[FcC₁C₁Im][Tf₂N] in [C₂C₁Im][EtOSO₃]

Figure S21 CVs obtained at WE1 in a 4.44 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_2C_1Im][EtOSO_3]$, v ranged from 25-500 mV s⁻¹, T = 298 K, $p = 5 \times 10^{-6}$ mbar.

Figure S22 Randles-Sevçik plots of $i_{p,a}$ *and* $i_{p,c}$ *vs.* $v^{1/2}$ *at* T = 298 *K* (—), 323 *K* (—), 348 *K* (—) *and* 373 *K* (—).

Figure S23 Cottrell plots generated from the chronoamperometric curves obtained at WE2 in a 4.67 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_2C_1Im][EtOSO_3]$, T = 298 K (—), 313 K (—), 330 K (—), 348 K (—) and 363 K (—), $p = 5 \times 10^{-6}$ mbar.

Table S8 Diffusion coefficients obtained for the oxidised and reduced forms of $[FcC_1C_1Im][Tf_2N]$ in $[C_2C_1Im][EtOSO_3]$ using CV and chronoamperometry recorded at different temperatures.

	$D_{ m RS}$	$D_{ m RS}$	$D_{ m Cott}$	$D_{ m Cott}$
<i>Т /</i> К	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$	$[FcC_1C_1Im]^+$	$[Fc^{+}C_{1}C_{1}Im]^{2+}$
	$ imes 10^{\text{-7}}\mathrm{cm^2}\mathrm{s^{\text{-1}}}$	$ imes 10^{\text{-7}}\text{cm}^2\text{s}^{\text{-1}}$	$ imes 10^{\text{-7}}\mathrm{cm^2}\mathrm{s^{\text{-1}}}$	$ imes 10^{\text{-7}}\text{cm}^2\text{s}^{\text{-1}}$
298	0.34 ± 0.01	0.24 ± 0.01	0.47 ± 0.02	0.39 ± 0.02
313	-	-	0.84 ± 0.04	0.68 ± 0.03
323	0.81 ± 0.03	0.63 ± 0.02	-	-
330	-	-	1.68 ± 0.07	1.27 ± 0.06
348	1.72 ± 0.06	1.26 ± 0.05	2.78 ± 0.13	2.27 ± 0.10
363	-	-	4.01 ± 0.19	3.37 ± 0.15
373	3.00 ± 0.12	2.46 ± 0.09	-	-

[FcC₁C₁Im][Tf₂N] in [C₂C₁Im][Tf₂N] with Ferrocene

Figure S24 Cottrell plots for the oxidation of $[FcC_1C_1Im][Tf_2N]$ generated from the chronoamperometric curves obtained at WE2 in a 4.68 mM solution of $[FcC_1C_1Im][Tf_2N]$ in $[C_2C_1Im][Tf_2N]$, T = 300 K (--), 313 K (--), 328 K (--), 348 K (--) and 363 K (--), $p = 5 \times 10^{-6}$ mbar.

Figure S25 CV recorded obtained at WE2 in a in a 4.48 mM solution of FcC_1Im in $[C_2C_1Im][Tf_2N]$ doped with 2.54 mM ferrocene, $v = 50 \text{ mV s}^{-1}$, T = 298 K, p = 1 atm.

FcC₁Im in [C₂C₁Im][Tf₂N]

Figure S26 CVs obtained at WE2 in a 4.56 mM solution of FcC_1 Im in $[C_2C_1Im][Tf_2N]$, v ranged from 25-500 mV s⁻¹, T = 298 K, p = 1 atm.

Figure S27 Randles-Sevçik plots of $i_{p,a}$ vs. $v^{l/2}$ at T = 298 K.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011

Figure S28 Cottrell plot generated from the chronoamperometric curve recorded at WE2 in a 4.56 mM solution of FcC_1Im in $[C_2C_1Im][Tf_2N]$, T = 298 K, p = 1 atm.

Figure S29 CV recorded obtained at WE2 in a in a 4.56 mM solution of FcC_1Im in $[C_2C_1Im][Tf_2N]$ doped with 1.55 mM ferrocene, $v = 50 \text{ mV s}^{-1}$, T = 298 K, p = 1 atm.

[FcC₁NMe₃][Tf₂N] in [C₂C₁Im][Tf₂N]

Figure S30 CVs obtained at WE2 in a 4.79 mM solution of $[FcC_1NMe_3][Tf_2N]$ in $[C_2C_1Im][Tf_2N]$, v ranged from 25-500 mV s⁻¹, T = 298 K, p = 1 atm.

Figure S31 Randles-Sevçik plots of $i_{p,a}$ vs. $v^{l/2}$ at T = 298 K.

Figure S32 Cottrell plot generated from the chronoamperometric curve recorded at WE2 in a 4.79 mM solution of $[FcC_1NMe_3][Tf_2N]$ in $[C_2C_1Im][Tf_2N]$, T = 298 K, p = 1 atm.

Figure S33 CV recorded obtained at WE2 in a in a 4.79 mM solution of $[FcC_1NMe_3][Tf_2N]$ in $[C_2C_1Im][Tf_2N]$ doped with 1.25 mM ferrocene, $v = 50 \text{ mV s}^{-1}$, T = 298 K, p = 1 atm.

Ionic Liquid	Τ/	γ/	$r_{ m H}$ /	η/	$D_{\rm Cott}$	ζ/
	Κ	$mN m^{-1}$	Å	Pa s	$\times 10^{-7} \text{ cm}^2 \text{ s}^{-1}$	Å
$[C_2C_1Im][Tf_2N]$	298	36.0	1.78	0.0342	1.71	3.73
	313	35.2	1.85	0.0203	2.70	4.18
	330	34.2	1.93	0.0131	4.05	4.55
	348	33.6	1.99	0.0083	5.91	5.19
	363	32.9	2.06	0.0058	7.99	5.73
$[C_4C_1Im][Tf_2N]$	298	32.6	1.87	0.0523	1.09	3.83
	313	31.9	1.94	0.0275	1.73	4.82
	330	30.8	2.03	0.0168	2.68	5.37
	348	30.4	2.10	0.0098	3.87	6.72
	363	29.1	2.19	0.0065	5.73	7.13
$[C_8C_1Im][Tf_2N]$	298	29.8	1.96	0.0955	0.68	3.34
	313	29.2	2.03	0.0459	1.50	3.33
	330	28.2	2.12	0.0258	1.89	4.95
	348	27.3	2.21	0.0134	3.44	5.53
	363	26.8	2.28	0.0085	4.55	6.87
$[C_4C_1Im][PF_6]$	298	45.9	1.58	0.2448	0.26	3.47
	313	44.7	1.64	0.1061	0.60	3.63
	330	43.4	1.71	0.0532	1.06	4.28
	348	42.0	1.79	0.0255	1.99	5.02
	363	40.8	1.85	0.0146	3.12	5.82
$[C_8C_1Im][PF_6]$	298	35.3	1.80	0.7032	0.09	3.56
	313	34.4	1.87	0.2632	0.20	4.33
	330	33.3	1.95	0.1008	0.45	5.30
	348	32.1	2.04	0.0395	0.88	7.31
	363	31.2	2.11	0.0194	1.47	9.29

Table S9 Data used to calculate the hole radius, r_{H} , and correlation length, ζ , values presented in Figure 5.