Supportin Information on

A Theoretical Study on Excited State Double Proton Transfer Reaction of 7-Azaindole Dimer: *Ab Initio* Potential Energy Surface and its Empirical Valence Bond Model

Kohei Ando, Shigehiko Hayashi and Shigeki Kato

Contents

Atom indices of a 7-AI monomer [Figure S1]	2
Definition of internal coordinates [Table S1]	3
The internal coordinates using in Eq. (5)	4
The definition of ϑ in Eq. (10) [Figure S2]	5
The internal coordinates at the equilibrium geometries in Eq. (5) [Table S2]	6
Partial charges in Eq. (8) [Table S3]	7
The dumping function in Eq. (7)	8
Parameters used in the PEF [Table S4]	9
The terms in the off-diagonal element in Eq. (14)	10
The force constant matrices in Eq. (5)	11
The CRK matrices in Eqs.(7)-(8)	12

Atom indices of a 7-AI monomer

Figure S1: Atom indices of a 7-AI monomer. For a tautomer, the transferring H is labeled as 15.

Definition of internal coordinates

coordinate type induces of atoms r_1 bond 1 2 r_2 bond 2 3 r_3 bond 3 4 r_4 bond 4 5 r_5 bond 6 7 r_7 bond 6 7 r_7 bond 9 4 r_10 bond 9 4 r_{10} bond 9 1 r_{11} bond 5 12 r_{14} bond 5 12 r_{14} bond 6 13 r_{15} bond 7 14 θ_{16} angle 1 2 q_{17} angle 4 5 12 r_{14} bond 7 14 9 q_{20} angle 3 1 2 q_{16} angle 9 1 2 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
r_1 bond 1 2 r_2 bond 2 3 r_3 bond 3 4 r_4 bond 4 5 r_5 bond 6 7 r_7 bond 7 8 r_6 bond 9 4 r_7 bond 9 4 r_10 bond 9 1 r_11 bond 2 10 r_{11} bond 5 12 r_11 bond 5 12 r_{14} bond 7 14 θ_{16} angle 1 2 10 θ_{17} angle 5 6 13 θ_{20} angle 4 5 1 ϕ_{21} dihedral 9 1 2 1 ϕ_{22} dihedral 4 5 6 1 ϕ_{22} <td>coordinate</td> <td>type</td> <td></td> <td>induces</td> <td>of atoms</td> <td></td>	coordinate	type		induces	of atoms	
r_2 bond 2 3 r_3 bond 3 4 r_4 bond 4 5 r_5 bond 6 7 r_6 bond 8 9 r_7 bond 9 4 r_8 bond 9 1 r_1 bond 9 1 r_1 bond 2 10 r_{11} bond 2 10 r_{12} bond 5 12 r_{14} bond 6 13 r_{15} bond 7 14 θ_{16} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 5 6 13 ϕ_{21} dihedral 9 1 2 10 ϕ_{22} dihedral 9 1 2 11 ϕ_{24} dihedral 9 1 2 3 ϕ_{25}	<i>r</i> 1	bond	1	2		
r_3 bond 3 4 r_4 bond 4 5 r_5 bond 6 7 r_7 bond 7 8 r_8 bond 9 1 r_10 bond 9 1 r_{10} bond 9 1 r_{11} bond 2 10 r_{12} bond 3 11 r_{13} bond 5 12 r_{14} bond 6 13 r_{15} bond 7 14 θ_{16} angle 1 2 10 θ_{17} angle 2 3 11 θ_{18} angle 4 5 6 θ_{20} angle 1 2 3 1 ϕ_{22} dihedral 9 4 5 1 ϕ_{24} dihedral 9 1 2 3 1 ϕ_{24} dihedral 5 6 7 <	r_2	bond	2	3		
r_4 bond 4 5 r_5 bond 5 6 r_6 bond 7 8 r_7 bond 9 4 r_9 bond 9 4 r_{10} bond 9 1 r_{11} bond 2 10 r_{12} bond 3 11 r_{13} bond 5 12 r_{14} bond 6 13 r_{14} bond 7 14 θ_{16} angle 1 2 10 θ_{17} angle 2 3 11 θ_{18} angle 5 6 13 θ_{20} angle 6 7 14 ϕ_{21} dihedral 9 1 2 10 ϕ_{22} dihedral 9 1 2 3 1 ϕ_{24} dihedral 4 5 6 1 1 ϕ_{25} angle 9	r_3	bond	3	4		
r5 bond 5 6 r6 bond 7 8 r7 bond 9 4 r9 bond 9 1 r10 bond 9 1 r11 bond 2 10 r12 bond 3 11 r13 bond 6 13 r14 bond 6 13 r15 bond 7 14 θ_{16} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 5 6 13 θ_{20} angle 5 6 14 θ_{21} dihedral 9 1 2 1 θ_{22} dihedral 4 5 6 1 θ_{24} dihedral 9 4 5 1 θ_{25} angle 1 2 3 4 θ_{25} angle 7 8 9	r ₄	bond	4	5		
r_0 bond 6 7 r_7 bond 7 8 r_8 bond 9 4 r_{10} bond 9 1 r_{11} bond 2 10 r_{12} bond 3 11 r_{12} bond 5 12 r_{14} bond 6 13 r_{15} bond 7 14 θ_{16} angle 1 2 10 θ_{17} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 6 7 14 ϕ_{21} dihedral 9 1 2 11 ϕ_{22} dihedral 1 2 3 1 ϕ_{22} dihedral 4 5 6 1 ϕ_{24} dihedral 4 5 6 1 ϕ_{25} dihedral	r5	bond	5	6		
r_0 bond 7 8 r_8 bond 9 4 r_0 bond 9 1 r_{10} bond 2 10 r_{11} bond 2 10 r_{12} bond 3 11 r_{13} bond 5 12 r_{14} bond 6 13 r_{15} bond 7 14 θ_{16} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 5 6 13 ϕ_{20} angle 6 7 14 ϕ_{21} dihedral 9 1 2 11 ϕ_{22} dihedral 9 1 2 11 ϕ_{22} dihedral 9 4 5 11 ϕ_{24} dihedral 9 1 2 3 ϕ_{24} angle 1 2 3 4 9 <tr< td=""><td>r g</td><td>bond</td><td>6</td><td>7</td><td></td><td></td></tr<>	r g	bond	6	7		
r_9 bond 9 4 r_{10} bond 9 4 r_{10} bond 9 1 r_{11} bond 2 10 r_{12} bond 3 11 r_{13} bond 5 12 r_{14} bond 6 13 r_{15} bond 7 14 θ_{16} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 5 6 13 θ_{20} angle 6 7 14 ϕ_{21} dihedral 9 1 2 10 ϕ_{22} dihedral 9 1 2 11 ϕ_{23} dihedral 9 4 5 11 ϕ_{25} dihedral 4 5 6 1 ϕ_{24} dihedral 4 9 1 2 3 θ_{25} angle 9 1 <t< td=""><td>r_0</td><td>bond</td><td>7</td><td>8</td><td></td><td></td></t<>	r_0	bond	7	8		
r_8 bond 9 4 r_{10} bond 9 1 r_{11} bond 2 10 r_{12} bond 3 11 r_{13} bond 5 12 r_{14} bond 6 13 r_{15} bond 7 14 θ_{16} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 5 6 13 θ_{20} angle 5 6 13 θ_{20} angle 9 1 2 11 ϕ_{22} dihedral 9 4 5 11 ϕ_{22} dihedral 9 1 2 11 ϕ_{24} dihedral 4 5 6 11 ϕ_{25} dihedral 5 6 7 14 ϕ_{26} angle 9 1 2 3 ϕ_{25} dihedral 9	ro	bond	8	9		
ryo bond 9 1 r_{11} bond 2 10 r_{12} bond 3 11 r_{13} bond 5 12 r_{14} bond 6 13 r_{15} bond 7 14 θ_{16} angle 1 2 10 θ_{17} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 5 6 13 ϕ_{20} angle 6 7 14 ϕ_{21} dihedral 9 1 2 1 ϕ_{22} dihedral 9 4 5 1 ϕ_{24} dihedral 4 5 6 1 ϕ_{25} angle 1 2 3 4 ϕ_{26} angle 1 2 3 4 ϕ_{25} angle 3 4 9 1 ϕ_{31} angle 9	ro	bond	9	4		
r_{11} bond 2 10 r_{12} bond 3 11 r_{13} bond 5 12 r_{14} bond 6 13 r_{15} bond 7 14 θ_{16} angle 1 2 10 θ_{17} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 5 6 13 θ_{20} angle 6 7 14 ϕ_{21} dihedral 9 1 2 1 ϕ_{22} dihedral 9 1 2 1 ϕ_{24} dihedral 9 1 2 3 1 ϕ_{24} dihedral 5 6 7 14 ϕ_{24} dihedral 9 1 2 3 4 9 ϕ_{25} dihedral 9 1 2 3 4 9 ϕ_{30} angle 7 </td <td>rig</td> <td>bond</td> <td>9</td> <td>1</td> <td></td> <td></td>	rig	bond	9	1		
r_{12} bond 3 11 r_{13} bond 5 12 r_{14} bond 6 13 r_{15} bond 7 14 θ_{16} angle 1 2 10 θ_{17} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 5 6 13 θ_{20} angle 6 7 14 ϕ_{21} dihedral 9 1 2 14 ϕ_{22} dihedral 1 2 3 11 ϕ_{23} dihedral 9 4 5 11 ϕ_{24} dihedral 4 5 6 12 ϕ_{24} dihedral 5 6 7 14 ϕ_{25} dihedral 5 6 7 16 ϕ_{26} angle 1 2 3 4 9 θ_{30} angle 7 8 <t< td=""><td>r 10</td><td>bond</td><td>2</td><td>10</td><td></td><td></td></t<>	r 10	bond	2	10		
r_{12} bond 5 11 r_{13} bond 6 13 r_{15} bond 7 14 θ_{16} angle 1 2 10 θ_{17} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 6 7 14 ϕ_{20} angle 6 7 14 ϕ_{21} dihedral 9 1 2 1 ϕ_{22} dihedral 9 1 2 1 ϕ_{23} dihedral 9 4 5 1 ϕ_{24} dihedral 4 5 6 1 ϕ_{25} dihedral 5 6 7 1 ϕ_{26} angle 9 1 2 3 ϕ_{26} angle 1 2 3 4 9 θ_{30} angle 7 8 9 4 5 6 θ_{31}	r11	bond	23	10		
r_{13} bond 5 12 r_{14} bond 7 14 θ_{16} angle 1 2 10 θ_{17} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 5 6 13 θ_{20} angle 6 7 14 θ_{21} dihedral 9 1 2 1 θ_{22} dihedral 9 1 2 1 ϕ_{22} dihedral 9 4 5 14 ϕ_{23} dihedral 9 4 5 1 ϕ_{25} dihedral 9 4 5 1 ϕ_{26} angle 1 2 3 4 9 θ_{27} angle 1 2 3 4 9 θ_{30} angle 3 4 9 1 6 θ_{31} angle 7 8 9 4 5<	7 ₁₂	bond	5	11		
r_{14} bond 7 14 η_{16} angle 1 2 10 θ_{17} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 5 6 13 θ_{20} angle 6 7 14 ψ_{21} dihedral 9 1 2 14 ψ_{22} dihedral 9 1 2 14 ψ_{22} dihedral 9 4 5 1 ψ_{24} dihedral 4 5 6 7 14 ψ_{25} dihedral 5 6 7 14 ψ_{26} angle 9 1 2 0 11 2 3 4 9 0 12 0 0 13 13 14 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14	7 ₁₃	bond	5	12		
r_{15} bond r_{14} θ_{16} angle 1 2 10 θ_{17} angle 2 3 11 θ_{18} angle 4 5 12 θ_{19} angle 6 7 14 ϕ_{20} angle 6 7 14 ϕ_{21} dihedral 9 1 2 1 ϕ_{22} dihedral 9 1 2 1 ϕ_{23} dihedral 9 4 5 1 ϕ_{24} dihedral 5 6 7 1. ϕ_{26} angle 9 1 2 3 ϕ_{26} angle 1 2 3 4 ϕ_{29} angle 3 4 9 1 ϕ_{31} angle 7 8 9 4 3 4 9 ϕ_{31} angle 5 6 7 8 9 4 4 4 4 4 4	r_{14}	bond	0	13		
	r_{15}	DONU an ala	/	14	10	
	Θ_{16}	angle	1	2	10	
θ_{18} angle4512 θ_{19} angle5613 θ_{20} angle6714 ϕ_{21} dihedral9121 ϕ_{22} dihedral1231 ϕ_{23} dihedral9451 ϕ_{24} dihedral4561 ϕ_{25} dihedral5671 θ_{26} angle9123 θ_{27} angle1234 θ_{29} angle349 θ_{30} angle789 θ_{31} angle789 θ_{32} angle945 θ_{33} angle945 θ_{34} angle456 θ_{35} angle567 θ_{36} angle678 ϕ_{37} dihedral123 ϕ_{38} dihedral123 ϕ_{440} dihedral349 ϕ_{441} dihedral789 ϕ_{444} dihedral789 ϕ_{445} dihedral789 ϕ_{446} dihedral945 ϕ_{455} dihedral945 ϕ_{455} dihedral945 ϕ_{46}	θ_{17}	angle	2	3	11	
θ_{19} angle5613 θ_{20} angle6714 ϕ_{21} dihedral9121 ϕ_{22} dihedral1231 ϕ_{23} dihedral9451 ϕ_{24} dihedral4561 ϕ_{25} dihedral5671 θ_{26} angle9123 θ_{26} angle234 θ_{27} angle123 θ_{28} angle234 θ_{29} angle349 θ_{31} angle789 θ_{32} angle894 θ_{33} angle945 θ_{44} angle4567 θ_{36} angle678 ϕ_{37} dihedral912 ϕ_{38} dihedral123 ϕ_{39} dihedral234 ϕ_{440} dihedral349 ϕ_{441} dihedral456 ϕ_{45} dihedral789 ϕ_{444} dihedral9456 ϕ_{455} dihedral678 ϕ_{46} dihedral678 ϕ_{46} dihedral678 ϕ_{46}	θ_{18}	angle	4	2	12	
θ_{20} angle 6 7 14 ϕ_{21} dihedral 9 1 2 1 ϕ_{22} dihedral 1 2 3 1 ϕ_{23} dihedral 9 4 5 1 ϕ_{24} dihedral 4 5 6 7 1 ϕ_{25} dihedral 5 6 7 1 θ_{26} angle 9 1 2 3 θ_{26} angle 2 3 4 9 θ_{27} angle 1 2 3 4 9 θ_{26} angle 2 3 4 9 9 θ_{30} angle 7 8 9 4 6 θ_{31} angle 6 7 8 9 4 6 6 7 8 9 4 6 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8	θ_{19}	angle	5	6	13	
	θ_{20}	angle	6	7	14	
	\$ 21	dihedral	9	1	2	10
	\$ 22	dihedral	1	2	3	11
	\$ 23	dihedral	9	4	5	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\$ 24	dihedral	4	5	6	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\$\phi_{25}	dihedral	5	6	7	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	θ_{26}	angle	9	1	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	θ_{27}	angle	1	2	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	θ_{28}	angle	2	3	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	θ_{29}	angle	3	4	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	θ_{30}	angle	4	9	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	θ_{31}	angle	7	8	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	θ_{32}	angle	8	9	4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	θ_{33}	angle	9	4	5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	θ_{34}	angle	4	5	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	θ_{25}	angle	5	6	7	
	θ36	angle	6	7	8	
	Φ27	dihedral	9	1	2	3
	φ ₃ ,	dihedral	1	2	3	4
	φ38 Φ20	dihedral	2	3	4	9
	φ39	dihedral	23	4	0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	φ40	dihedral	5	- 0	1	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ψ41 Φ.1-	dihedral	+ 7	9	1	2 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ψ42	dihadral	/	0	9	4
	Ψ43	dinedrai	0	9	4	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ψ44		9	4	5	0
ψ_{46} dinedral 5 6 7 ϕ_{47} dihedral 6 7 8 9 ϕ_{48} dihedral 1 9 4 9 ϕ_{49} dihedral 8 9 4 1 r_{50} bond 1 (8) 15 (15) 15 θ_{51} angle 9 (9) 1 (8) 15 (15) ϕ_{52} dihedral 4 (4) 9 (9) 1 (8) 15 (15)	Ψ45	dinedral	4	5	07	/
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Φ46	dinedral	5	6	/	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\$ 47	dihedral	6	7	8	9
	\$ 48	dihedral	1	9	4	5
$\begin{array}{cccccccc} r_{50} & \text{bond} & 1 (8) & 15 (15) \\ \theta_{51} & \text{angle} & 9 (9) & 1 (8) & 15 (15) \\ \phi_{52} & \text{dihedral} & 4 (4) & 9 (9) & 1 (8) & 15 (15) \end{array}$	\$ 49	dihedral	8	9	4	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r ₅₀	bond	1 (8)	15 (15)		
ϕ_{52} dihedral 4 (4) 9 (9) 1 (8) 15 (15	θ_{51}	angle	9 (9)	1 (8)	15 (15)	
	\$\$52	dihedral	4 (4)	9 (9)	1(8)	15 (15)

Table S1: Definition of internal coordinates [() for monomers of a tautomer.]

The internal coordinates using in Eq. (5)

The internal coordinates using in Eq. (5) (natural internal coordinates) is given as follows:

$$q_i = r_i$$
 (for $i = 1, ..., 15$), (S1)

$$q_i = \theta_i$$
 (for $i = 16, \dots, 20$), (S2)

$$q_i = \phi_i$$
 (for $i = 21, \dots, 25$), (S3)

$$q_{26} = 0.6324\theta_{26} - 0.5117\theta_{27} + 0.1954\theta_{28} + 0.1954\theta_{29} - 0.5116\theta_{30}, \tag{S4}$$

$$q_{27} = 0.3717\theta_{27} - 0.6015\theta_{28} + 0.6015\theta_{29} - 0.3717\theta_{30}, \tag{S5}$$

$$q_{28} = 0.5774\theta_{31} - 0.2887\theta_{32} - 0.2887\theta_{33} + 0.5774\theta_{34} - 0.2887\theta_{35} - 0.2887\theta_{36},$$
(S6)

$$q_{29} = 0.5000\theta_{32} - 0.5000\theta_{33} + 0.5000\theta_{35} - 0.5000\theta_{36},\tag{S7}$$

$$q_{30} = 0.4082\theta_{31} - 0.4082\theta_{32} + 0.4082\theta_{33} - 0.4082\theta_{34} + 0.4082\theta_{35} - 0.4082\theta_{36},$$
(S8)

$$q_{31} = 0.6324\phi_{37} - 0.5117\phi_{38} + 0.1954\phi_{39} + 0.1954\phi_{40} - 0.5116\phi_{41}, \tag{S9}$$

$$q_{32} = 0.3717\phi_{38} - 0.6015\phi_{39} + 0.6015\phi_{40} - 0.3717\phi_{41}, \tag{S10}$$

$$q_{33} = 0.5774\phi_{42} - 0.2887\phi_{43} - 0.2887\phi_{44} + 0.5774\phi_{45} - 0.2887\phi_{46} - 0.2887\phi_{47},$$
(S11)

$$q_{34} = 0.5000\phi_{43} - 0.5000\phi_{44} + 0.5000\phi_{46} - 0.5000\phi_{47}, \tag{S12}$$

$$q_{35} = 0.4082\phi_{42} - 0.4082\phi_{43} + 0.4082\phi_{44} - 0.4082\phi_{45} + 0.4082\phi_{46} - 0.4082\phi_{47}, \tag{S13}$$

$$q_{36} = 0.7071\phi_{48} - 0.7071\phi_{49},\tag{S14}$$

where $\{r_i\}$, $\{\theta_i\}$ and $\{\phi_i\}$ are given in Table S1.

The definition of ϑ in Eq. (10)

The definition of ϑ in Eq. (10) is an angle between two planes each of which includes two protons and the averaged position of C and N atoms of each monomer.

Figure S2: Graphical definition of ϑ (θ in the figure). "H" are the transferring H atoms (H₂₉ and H₃₀), and "×" are the averaged positions of C and N atoms of each monomer, respectively.

The internal coordinates at the equilibrium geometries in Eq. (5)

coordinates	А	A^*	Т	T^*
q_1^{X}	2.5925372	2.4518200	2.6275132	2.4308217
$q_2^{\rm X}$	2.5667306	2.7180162	2.5654832	2.7399253
$\hat{q}_3^{\tilde{\mathbf{X}}}$	2.7218150	2.7696040	2.7353528	2.8063599
$q_4^{\rm X}$	2.6708075	2.7061183	2.5859045	2.7161306
$q_5^{\dot{X}}$	2.6135025	2.7064303	2.7208457	2.7266622
q_6^{X}	2.6841343	2.6052897	2.5779752	2.5511454
q_7^{X}	2.4917979	2.5687652	2.6002479	2.6132843
$q_8^{\rm X}$	2.5383235	2.5426987	2.5467361	2.6155990
$q_9^{\rm X}$	2.6263435	2.5862249	2.7650053	2.5638161
$q_{10}^{\acute{\mathbf{X}}}$	2.5811553	2.7053270	2.4459721	2.6498177
q_{11}^{X}	2.0231191	2.0231007	2.0289360	2.0289667
$q_{12}^{\mathbf{X}}$	2.0249011	2.0243302	2.0238963	2.0252201
$q_{13}^{\tilde{X}}$	2.0321786	2.0257161	2.0312925	2.0238338
q_{14}^{X}	2.0299443	2.0325190	2.0277068	2.0300379
q_{15}^{X}	2.0336426	2.0341529	2.0252684	2.0284492
q_{16}^{X}	2.1059131	2.1557256	2.0682843	2.1283642
q_{17}^{X}	2.1972201	2.1816701	2.2284846	2.2324353
q_{18}^{X}	2.1227640	2.1615093	2.1240036	2.1524406
q_{19}^{X}	2.1169384	2.0951695	2.1058832	2.0970655
q_{20}^{X}	2.0861695	2.0634408	2.1483318	2.1217328
q_{21}^{X}	3.1415927	3.1415927	3.1415927	3.1415927
q_{22}^{X}	3.1415927	3.1415927	3.1415927	3.1415927
q_{23}^{X}	3.1415927	3.1415927	3.1415927	3.1415927
q_{24}^{X}	3.1415927	3.1415927	3.1415927	3.1415927
q_{25}^{X}	3.1415927	3.1415927	3.1415927	3.1415927
q_{26}^{X}	-0.0227403	0.0454976	-0.1901739	-0.1421547
q_{27}^{X}	0.0119608	0.0027608	-0.0128891	-0.0153030
q_{28}^{X}	-0.1225686	-0.2819491	0.0009346	-0.1315385
q_{29}^{X}	0.0461145	0.0560220	-0.0058846	-0.0022476
q_{30}^{X}	-0.1192271	-0.1390426	0.0154060	0.0098503
q_{31}^{X}	0.0000000	0.0000000	0.0000000	0.0000000
$q_{32}^{\rm X}$	0.0000000	0.0000000	0.0000000	0.0000000
q_{33}^{X}	0.0000000	0.0000000	0.0000000	0.0000000
q_{34}^{X}	0.0000000	0.0000000	0.0000000	0.0000000
$q_{35}^{\rm X}$	0.0000000	0.0000000	0.0000000	0.0000000
q_{36}^{X}	0.0000000	0.0000000	0.0000000	0.0000000

Table S2: The internal coordinates at the equilibrium geometries. [unit: a.u. for length, radian for angle]

Partial charges in Eq. (8)

charge	А	A^*	Т	T*
$Q_1^{0,\mathrm{X}}$	-0.169834	-0.082821	-0.581416	-0.490232
$Q_2^{0,\mathrm{X}}$	-0.263313	-0.066338	0.074665	0.074726
$Q_3^{0,\mathrm{X}}$	-0.327666	-0.020124	-0.407244	-0.066384
$Q_4^{0,\mathrm{X}}$	0.095316	0.036474	0.162125	0.081614
$Q_5^{0,\mathrm{X}}$	-0.151021	-0.339202	-0.112857	-0.235512
$Q_6^{0,\mathrm{X}}$	-0.204233	-0.271592	-0.202760	-0.241682
$Q_7^{0,\mathrm{X}}$	0.170251	0.069170	-0.187674	-0.243371
$Q_8^{0,\mathrm{X}}$	-0.478876	-0.637976	-0.068190	-0.137908
$Q_9^{0,\mathrm{X}}$	0.264236	0.263393	0.275304	0.237133
$Q_{10}^{0,{ m X}}$	0.223053	0.180178	0.156244	0.123750
$Q_{11}^{0,X}$	0.193080	0.170111	0.157577	0.123871
$Q_{12}^{0,X}$	0.155419	0.145060	0.148979	0.145596
$Q_{13}^{0,X}$	0.118982	0.134074	0.152760	0.171421
$Q_{14}^{0,X}$	0.086008	0.117481	0.175848	0.193623
$Q_{15}^{0,X}$	0.288597	0.302112	0.256638	0.263355

Table S3: Partial charges [unit:a.u.]

The dumping function in Eq. (7)

The dumping function used in Eq. (7) is as follows:

$$f(r_{\alpha\beta}) = \begin{cases} \left(\frac{r_{\alpha\beta}}{s_{\alpha\beta}}\right)^4 - 2\left(\frac{r_{\alpha\beta}}{s_{\alpha\beta}}\right)^2 + 2\left(\frac{r_{\alpha\beta}}{s_{\alpha\beta}}\right) & (r_{\alpha\beta} < s_{\alpha\beta}), \\ 1 & (r_{\alpha\beta} \ge s_{\alpha\beta}), \end{cases}$$
(S15)

where

$$s_{\alpha\beta} = A(a_{\alpha}a_{\beta})^{1/6}.$$
 (S16)

Here $\{a_{\alpha}\}$ denote the "volume" of each atom derived from the atomic polarizability and are given for the atomic species as follows; $a_{\rm C} = 1.405 \text{ Å}^3$, $a_{\rm H} = 0.514 \text{ Å}^3$, and $a_{\rm N} = 1.105 \text{ Å}^3$. A is a scaling factor and given as A = 2.6.

Parameters used in the PEF

term	AA*	TT^*
V_0^{X}	-378.693877071	-378.666779221
$D_e^{\mathbf{X}}$	$2.556996307 \times 10^{-1}$	$2.408089647 \times 10^{-1}$
α^{X}	1.002760889	1.019491804
r^{X}	1.927998115	1.934760239
α_{θ}^{X}	$2.414311060 \times 10^{-1}$	$2.777469250 imes 10^{-1}$
θ^{X}	2.176783012	2.057857084
α_{ϕ}^{X}	$2.113007700 \times 10^{-2}$	$4.205127250 \times 10^{-2}$
ϕ^X	3.141592654	3.141592654
$V_0^{X^*}$	-378.525263596	-378.568184655
$D_e^{\mathbf{X}^*}$	$2.391871087 \times 10^{-1}$	$2.562908779 \times 10^{-1}$
α^{X^*}	1.013914033	1.003143599
r^{X^*}	1.940549747	1.926430678
$lpha_{ heta}^{\mathrm{X}^*}$	$2.386010320 \times 10^{-1}$	$2.676720880 \times 10^{-1}$
θ^{X^*}	2.130919718	2.108576850
$\alpha_{\phi}^{X^*}$	$5.529704930 \times 10^{-2}$	$3.437585380 imes 10^{-2}$
φ ^{'X*}	3.141592654	3.141592654
$V_2^{A^*A} (V_1^{T^*T})$	2.262166652	2.731388624
$\tilde{\zeta_2^{A^*A}}$ ($\tilde{\zeta_1^{T^*T}}$)	1.461380588	1.491409338
$\tilde{V}_{2}^{A^{*}A}$ ($\tilde{V}_{1}^{T^{*}T}$)	$1.240963675 \times 10^{-1}$	$1.258089837 imes 10^{-1}$
$\tilde{\zeta}_2^{A^*A}$ $(\tilde{\zeta}_1^{T^*T})$	$6.322459320 \times 10^{-1}$	$6.869198610 imes 10^{-1}$
$V_4^{\bar{A}^*A} (V_3^{\bar{T}^*T})$	2.282898550	2.734431873
$\zeta_{4}^{A^{*}A} (\zeta_{3}^{T^{*}T})$	1.461331602	1.491443718
$ ilde{V}_{4}^{A^{*}A} (ilde{V}_{3}^{T^{*}T})$	$1.248733091 \times 10^{-1}$	$1.258842582 imes 10^{-1}$
$ ilde{\zeta}_4^{\mathrm{A}^*\mathrm{A}}(ilde{\zeta}_3^{\mathrm{T}^*\mathrm{T}})$	$6.375272414 \times 10^{-1}$	$6.651187377 imes 10^{-1}$
$a_{\Phi_2}^{A^*A} (a_{\Phi_1}^{T^*T})$	$2.480882688 \times 10^{-1}$	$2.313455213 \times 10^{-1}$
$a_{\phi_4}^{\dot{A}^*A} (a_{\phi_3}^{\dot{T}^*T})$	$2.642175920 \times 10^{-1}$	$2.207843240 \times 10^{-1}$
V _{corr 0} ^{X*X}	$-1.667780276 \times 10^{-2}$	$-1.621894161 \times 10^{-2}$
$(a_{\rm corr}^{{\rm X}^*{\rm X}})^{1/6}$	4.377336791	4.618272738
a_{ϑ}	$1.570261956 \times 10^{-1}$	$1.518469875 imes 10^{-1}$
$V^{\rm NN}$	$7.500000000 \times 10^{-5}$	$7.500000000 \times 10^{-5}$
ζ^{NN}	$1.000000000 imes 10^{+1}$	$1.000000000 imes 10^{+1}$
R ^{NN}	5.00000000	5.00000000
a _{mod}	$1.000000000 \times 10^{-1}$	$1.00000000 \times 10^{-1}$

Table S4: Parameters used in the PEF (unit:a.u.).

The terms in the off-diagonal element in Eq. (14)

The terms in the off-diagonal element, Eq. (14), is as follows.

$$a_1' = 1.362672513 \times 10^{-1},\tag{S17}$$

$$a_2' = 1.047629760 \times 10^{-3} \xi_1^2 - 2.848680071 \times 10^{-2} \xi_1 + 4.827950385 \times 10^{-1}, \tag{S18}$$

$$a'_3 = 1.853914153 \times 10^{-2}, \tag{S19}$$

$$a_1'' = -4.453415570 \times 10^{-2} \xi_1^2 + 3.721369096 \times 10^{-3} \xi_1 - 1.335184827 \times 10^{-1},$$
 (S20)

$$a_2'' = -1.194755309 \times 10^{-1} \xi_1^2 - 1.355779708 \times 10^{-2} \xi_1 + 5.613355470 \times 10^{-1},$$
 (S21)

$$a_3'' = -1.523253963 \times 10^{-2}.$$
(S22)

If $a_2'' \le 0$, the second term of Eq. (14) is neglected, *i.e.*, $a_1'' = 0$.

The force constant matrices in Eq. (5)

The force constant matrices in Eq. (5) are in another file. In the file, the parameters are tabulated as follws.

```
----- force constant matrix for monomer A, a^{A}_{i,j} -----
#
#
            1
                        2
                                   3
#j∖i
                                                4
 1 0.4768785930D+00 0.5564599340D-01 -0.1796669960D-01 0.7318808400D-02
 2 .....
 36 .....
                                           . . . . . . . .
#j∖i
             5
                         6
                                                8
 1 .....
 •
      .
                 .
      .
#j\i
           33
                       34
                                   35
                                              36
 1 .....
 .
      .
                             .
      .
                 .
                             .
 36 .....
                          . . . . . . . . . . . . . . . . . .
#
----- force constant matrix for monomer A*, a^{A*}_{i,j} -----
#
#
#j\i
            1
                        2
                                    3
                                                4
 1 0.6822566280D+00 0.5550027470D-01 0.2299298890D-01 -0.3148648080D-01
    .
                           .
      .
 .
#
 ----- force constant matrix for monomer T, a^{T}_{i,j} -----
#
#
#j\i
             1
                        2
                                    3
                                                4
 1 .....
                   . . . . . . . . . .
#
 ----- force constant matrix for monomer T*, a^{T*}_{i,j} -----
#
#
#j\i
            1
                        2
                                    3
                                                4
 1 .....
                 .
                             .
                                        .
      .
```

The CRK matrices in Eqs. (7)-(8)

The CRK matrices in Eqs. (7)-(8) are in another file. In the file, the parameters are tabulated as follws.

# #	charge response	e kernel for monome	er A, K^{A}_{i,j}		
#j\i 1 2	1 -0.4149651000D+01	2 0.9245640000D+00	3 0.1956897000D+01	4 -0.1654392000D+01	5 0.3792570000D+00
15					
#j\i 1	6	7	8	9	10
#j\i 1	11	12	13	14	15
15				• •	
#					
# #	charge response	e kernel for monome	er A*, K^{A*}_{i,j	}	
# #j\i 1	1	2	3	4	5
	:				
# #					
# # #	charge response	e kernel for monome	er T, K^{T}_{i,j} ·		
#j\i 1	1	2	3	4	5
•					
# # #	charge response	e kernel for monome			
" # #j\i 1	1	2	3	4	5
•	•	•	•	•	•