Supplementary Information Section:

The Role of Low Levels of Water and Hydrogen-Bonding on the Electrochemical Oxidation of α-Tocopherol (Vitamin E) and Other Phenols in Acetonitrile.

Ying Shan <u>Tan</u>, Shanshan <u>Chen</u>, Wan Mei <u>Hong</u>, Jai Min <u>Kan</u>, Edwin Swee Hee <u>Kwek</u>, Shi Yu <u>Lim</u>, Zhen Hui <u>Lim</u>, Malcolm E. <u>Tessensohn</u>, Yinlu <u>Zhang</u> and Richard D. <u>Webster</u>*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

*E-mail: webster@ntu.edu.sg; Telephone: +65 6316 8793; Fax: +65 6791 1961

CONTENTS

Page	S2.	Figures S1.	CV and digital	simulations of o	α-TOH in Cl	H ₃ CN with 0.0)13 M H ₂ O.

- **Page S3.** *Figures S2.* CV and digital simulations of α -TOH in CH₃CN with 0.123 M H₂O.
- **Page S4.** *Figures S3.* CV and digital simulations of α -TOH in CH₃CN with 0.233 M H₂O.
- **Page S5.** *Figures S4.* CV and digital simulations of α -TOH in CH₃CN with 0.343 M H₂O.
- **Page S6.** *Figures S5.* CV and digital simulations of α -TOH in CH₃CN with 0.453 M H₂O.
- **Page S7.** *Figures S6.* CV and digital simulations of α -TOH in CH₃CN with 0.563 M H₂O.
- **Page S8.** *Figures S7.* 400-MHz ¹H NMR spectra of 80 mM α -TOH in dried CD₃CN with different ratios of D₂O.
- **Page S9.** *Figures S8.* 400-MHz ¹H NMR spectra of 80 mM α -TOH in dried CD₃CN with different ratios of DMSO.
- **Page S10.** *Figures S9.* 400-MHz ¹H NMR spectra of 80 mM α -TOH in dried CD₃CN with different ratios of pyridine.

Figure S1. (–) Experimental CVs of 2×10^{-3} M α -TOH in CH₃CN (with 0.0.013 M H₂O) containing 0.2 M Bu₄NPF₆ at 22 ±2 °C recorded at a 1 mm diameter Pt electrode at varying scan rates (ν). Positive current is in the upwards direction. Current data were scaled by multiplying by $\nu^{-0.5}$. The starting potential is –1 V *vs.* Fc/Fc⁺ and the finishing potential is 0 V *vs.* Fc/Fc⁺ on the second scan. (––) Digital simulations of experimental data according to the mechanism in Scheme 2 and parameters in Tables 2 and 3.

Figure S2. (–) Experimental CVs of 2×10^{-3} M α -TOH in CH₃CN (with 0.123 M H₂O) containing 0.2 M Bu₄NPF₆ at 22 ±2 °C recorded at a 1 mm diameter Pt electrode at varying scan rates (ν). Positive current is in the upwards direction. Current data were scaled by multiplying by $\nu^{-0.5}$. The starting potential is –1 V *vs.* Fc/Fc⁺ and the finishing potential is 0 V *vs.* Fc/Fc⁺ on the second scan. (––) Digital simulations of experimental data according to the mechanism in Scheme 2 and parameters in Tables 2 and 3.

Figure S3. (–) Experimental CVs of 2×10^{-3} M α -TOH in CH₃CN (with 0.233 M H₂O) containing 0.2 M Bu₄NPF₆ at 22 ±2 °C recorded at a 1 mm diameter Pt electrode at varying scan rates (ν). Positive current is in the upwards direction. Current data were scaled by multiplying by $\nu^{-0.5}$. The starting potential is –1 V *vs.* Fc/Fc⁺ and the finishing potential is 0 V *vs.* Fc/Fc⁺ on the second scan. (––) Digital simulations of experimental data according to the mechanism in Scheme 2 and parameters in Tables 2 and 3.

Figure S4. (–) Experimental CVs of 2×10^{-3} M α -TOH in CH₃CN (with 0.343 M H₂O) containing 0.2 M Bu₄NPF₆ at 22 ±2 °C recorded at a 1 mm diameter Pt electrode at varying scan rates (ν). Positive current is in the upwards direction. Current data were scaled by multiplying by $\nu^{-0.5}$. The starting potential is –1 V *vs.* Fc/Fc⁺ and the finishing potential is 0 V *vs.* Fc/Fc⁺ on the second scan. (––) Digital simulations of experimental data according to the mechanism in Scheme 2 and parameters in Tables 2 and 3.

Figure S5. (–) Experimental CVs of 2×10^{-3} M α -TOH in CH₃CN (with 0.453 M H₂O) containing 0.2 M Bu₄NPF₆ at 22 ±2 °C recorded at a 1 mm diameter Pt electrode at varying scan rates (ν). Positive current is in the upwards direction. Current data were scaled by multiplying by $\nu^{-0.5}$. The starting potential is –1 V *vs.* Fc/Fc⁺ and the finishing potential is 0 V *vs.* Fc/Fc⁺ on the second scan. (––) Digital simulations of experimental data according to the mechanism in Scheme 2 and parameters in Tables 2 and 3.

Figure S6. (–) Experimental CVs of 2×10^{-3} M α -TOH in CH₃CN (with 0.563 M H₂O) containing 0.2 M Bu₄NPF₆ at 22 ±2 °C recorded at a 1 mm diameter Pt electrode at varying scan rates (v). Positive current is in the upwards direction. Current data were scaled by multiplying by $v^{-0.5}$. The starting potential is –1 V vs. Fc/Fc⁺ and the finishing potential is 0 V vs. Fc/Fc⁺ on the second scan. (––) Digital simulations of experimental data according to the mechanism in Scheme 2 and parameters in Tables 2 and 3.

Figure S7. 400-MHz ¹H NMR spectra of 80 mM α -TOH in dried CD₃CN with different ratios of D₂O.

Figure S8. 400-MHz ¹H NMR spectra of 80 mM α -TOH in dried CD₃CN with different ratios of DMSO.

Figure S9. 400-MHz ¹H NMR spectra of 80 mM α -TOH in dried CD₃CN with different ratios of pyridine.