Electronic Supporting Information: Comparison of the performance of dispersion-corrected density functional theory for weak hydrogen bonds

Waldemar Hujo and Stefan Grimme*

Contents

1	The $CH_4 \cdot NH_3$ complex	2
2	The $Cl_3CH \cdot NH_3$ complex	3
3	The $NH_3 \cdot NH_3$ complex	4
4	The $CH_3F \cdot C_2H_2$ complex	5
5	The $CH_3F \cdot H_2O$ complex	6
6	Errors of intermolecular distances and binding energies	7

1 The $CH_4 \cdot NH_3$ complex

Figure 1 Potential energy curves for $CH_4 \cdot NH_3$. Calculations were performed with the BLYP, rPW86-PBE, B-D-zero, rP-D-zero, B-D, rP-D, VV10 and vdW-DF2 methods with the aug-cc-pVQZ basis set. The reference potential energy curve was computed at the estimated CCSD(T)/CBS(aQ-a5) level of theory.

Table 1 Bin	nding Energy	(ΔE) energy	and equilibrium	distance for	CH_4	·NH ₃ .
-------------	--------------	---------------------	-----------------	--------------	--------	--------------------

Method	R(H–N) [Å]	$-\Delta E$ [kcal/mol]
CCSD(T)	2.80	0.73
MP2	2.81	0.69
BLYP	3.13	0.17
rPW86-PBE	2.80	0.61
B-D	2.80	0.64
rP-D	2.70	0.98
B-D-zero	2.77	0.72
rP-D-zero	2.70	1.04
VV10	2.70	1.03
vdW-DF2	2.85	0.85

2 The $Cl_3CH \cdot NH_3$ complex

Figure 2 Potential energy curves for $Cl_3CH \cdot NH_3$. Calculations were performed with the BLYP, rPW86-PBE, B-D-zero, rP-D-zero, B-D, rP-D, VV10 and vdW-DF2 methods with the aug-cc-pVQZ basis set. The reference potential energy curve was computed at the estimated CCSD(T)/CBS(aQ-a5) level of theory.

Table 2 Binding	Energy (ΔE)	energy and	equilibrium	distance	for Cl ₂	CH · NH ₃ .
-----------------	-----------------------	------------	-------------	----------	---------------------	------------------------

Method	R(H–N) [Å]	$-\Delta E [kcal/mol]$
CCSD(T)	2.16	5.51
MP2	2.14	5.60
BLYP	2.29	3.69
rPW86-PBE	2.20	4.75
B-D	2.15	5.38
rP-D	2.14	5.81
B-D-zero	2.15	5.36
rP-D-zero	2.15	5.82
VV10	2.13	5.97
vdW-DF2	2.24	5.12

3 The $NH_3 \cdot NH_3$ complex

Figure 3 Potential energy curves for $NH_3 \cdot NH_3$. Calculations were performed with the BLYP, rPW86-PBE, B-D-zero, rP-D-zero, B-D, rP-D, VV10 and vdW-DF2 methods with the aug-cc-pVQZ basis set. The reference potential energy curve was computed at the estimated CCSD(T)/CBS(aQ-a5) level of theory.

Table 3 Binding	Energy (ΔE) energy and	l equilibrium	distance	for NH2	$_{3} \cdot NH_{3}$.
-----------------	---------------------	--------------	---------------	----------	---------	-----------------------

Method	R(N–N) [Å]	$-\Delta E$ [kcal/mol]
CCSD(T)	3.16	3.12
MP2	3.16	3.16
BLYP	3.28	1.89
rPW86-PBE	3.19	2.74
B-D	3.20	2.90
rP-D	3.15	3.34
B-D-zero	3.25	2.98
rP-D-zero	3.17	3.37
VV10	3.12	3.47
vdW-DF2	3.25	3.00

4 The $CH_3F \cdot C_2H_2$ complex

Figure 4 Potential energy curves for $CH_3F \cdot C_2H_2$. Calculations were performed with the BLYP, rPW86-PBE, B-D-zero, rP-D-zero, B-D, rP-D, VV10 and vdW-DF2 methods with the aug-cc-pVQZ basis set. The reference potential energy curve was computed at the estimated CCSD(T)/CBS(aQ-a5) level of theory.

Table 4 Binding Energy	(ΔE) energy	and equilibrium	distance for	CH	$F \cdot ($	C_2H_2	,.
------------------------	---------------------	-----------------	--------------	----	-------------	----------	----

Method	R(H–F) [Å]	$-\Delta E$ [kcal/mol]
CCSD(T)	2.20	1.98
MP2	2.20	1.91
BLYP	2.30	1.11
rPW86-PBE	2.20	1.49
B-D	2.25	1.65
rP-D	2.21	1.84
B-D-zero	2.30	1.87
rP-D-zero	2.20	1.94
VV10	2.18	1.97
vdW-DF2	2.25	1.93

5 The $CH_3F \cdot H_2O$ complex

Figure 5 Potential energy curves for $CH_3F \cdot H_2O$. Calculations were performed with the BLYP, rPW86-PBE, B-D-zero, rP-D-zero, B-D, rP-D, VV10 and vdW-DF2 methods with the aug-cc-pVQZ basis set. The reference potential energy curve was computed at the estimated CCSD(T)/CBS(aQ-a5) level of theory.

Method	R(C=0) [Å]	-AF [kcal/mol]
method		
CCSD(T)	3.22	4.15
MP2	3.21	4.09
BLYP	3.34	2.43
rPW86-PBE	3.27	3.25
B-D	3.28	3.50
rP-D	3.24	3.86
B-D-zero	3.31	3.94
rP-D-zero	3.25	4.05
VV10	3.23	4.21
vdW-DF2	3.30	3.88

Table 5 Binding Energy (ΔE) energy and equilibrium distance for $CH_3F \cdot H_2O$.

6 Errors of intermolecular distances and binding energies

Figure 6 Deviations of DFT-computed intermolecular distances (left) and binding energies (right) from estimated CCSD(T)/CBS(aQ-a5) reference data for all complexes.