Supporting Information

Structures and IR/UV spectra of neutral and ionic phenol-Ar_n cluster isomers (n≤4): competition between hydrogen bonding and stacking **

Matthias Schmies,¹ Alexander Patzer,¹ Masaaki Fujii,² and Otto Dopfer¹*

¹ Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany ² Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

* E-mail: dopfer@physik.tu-berlin.de

** dedicated to Bernhard Brutschy on the occasion of this 65th birthday

Table T1. O-H stretch frequencies (v_{OH} in cm⁻¹) of selected PhOH-Ar_n isomers calculated at the M06-2X level compared to available experimental values.

n	Exp ^a	M06-2X isomer		
0	3658	3658	PhOH	
1		3648 (H00)		
	3656	3656	(10)	
2		3647	(H10)	
		3651	(11) ^H	
	3656	3654	(11)	
		3655	(20)	
3		3649	(H11)	
	3654	3652	(30)	
		3652	(21)	
		3653	(H20)	
		3651	(21) ^H	
4		3650	(H30)	
		3650	(H21)	
		3655	(22)	
		3653	(40)	
		3648	(40) T	
	3653	3648	(31)	

^a S. Ishiuchi et al., *Phys. Chem. Chem. Phys.*, 2011, **13**, 2409.

Table T2. Frequencies of intermolecular modes of (10) and (11) in the S_0 and S_1 states evaluated at the RI-CC2/aug-cc-pVDZ level. Harmonic frequencies are scaled by 0.752. Available experimental values in the S_1 state are given for comparison.

(01)	S ₀	S ₁	S ₁ (exp) ^a	(11)	S ₀	S ₁	S ₁ (exp) ^b
b _x	20	20	20	b _{xs}	13	13	14
b _y	35	37		b _{ys}	18	20	20
Sz	41	45	45	b _{xa}	25	25	
				S _{zs}	36	39	36
				S _{za}	45	49	
				b _{ya}	50	49	

^a M. Mons et al., *J. Chem. Phys.*,1990, **92**, 2155.

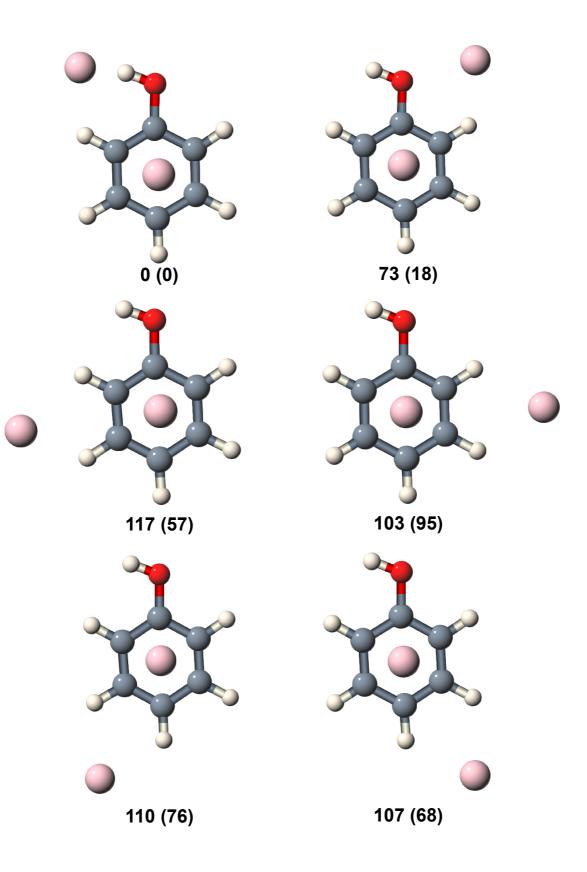

^b S. Ishiuchi et al., *J. Phys. Chem. A*, 2007, **111**, 7569.

Figure Captions

Figure F1. Structures and relative energies (in cm⁻¹) of various (20) isomers of PhOH-Ar₂ in the S₀ state calculated at the M06-2X/aug-cc-pVTZ level. The relative energies are derived from D_e (D_0) values.

Figure F2. (a) Experimental ΔS_1 shifts of various isomers of PhOH-Ar_n (n≤4) with respect to the S₁ origin of bare PhOH (n=0) at 36350 cm⁻¹. (b) ΔS_1 shifts calculated for various isomers of PhOH-Ar_n (n≤4) with respect to the S₁ origin of bare PhOH (n=0) at 36349 cm⁻¹ using adiabatic transition energies without ZPE.

Figure F3. Structures and relative energies (in cm⁻¹) of various (20) isomers of PhOH-Ar₂ in the D_0 state calculated at the M06-2X/aug-cc-pVTZ level. The relative energies are derived from D_e (D_0) values.

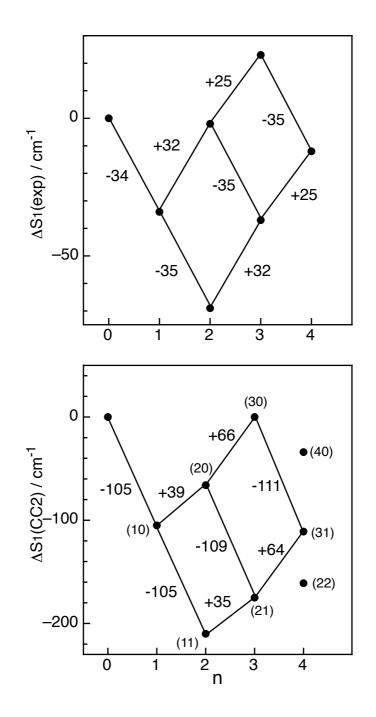
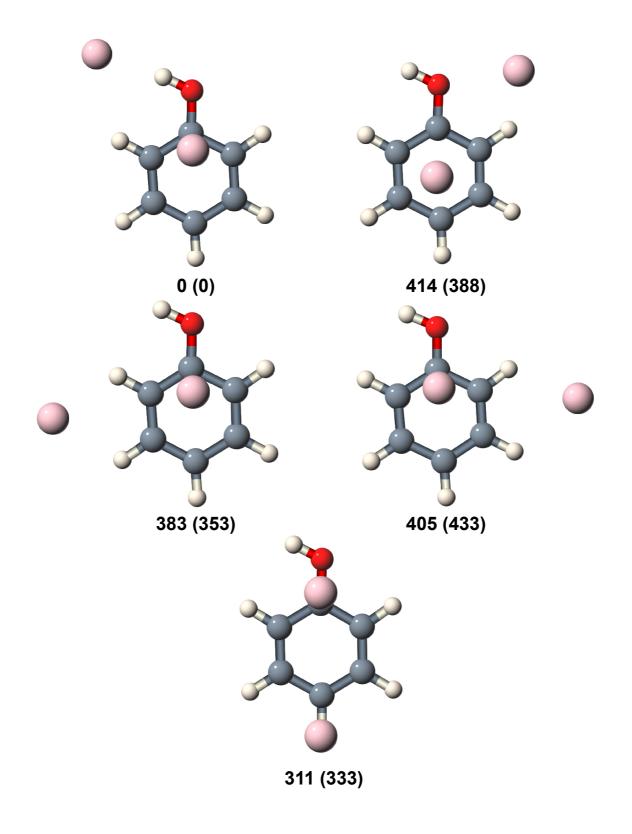



Figure F2

