Electronic Supplementary Information

Electrocatalytic properties of Au@Pt nanoparticles: effects of Pt shell packing density and Au core size

Bingchen Du, Oksana Zaluzhna, YuYe J. Tong*

Department of Chemistry, Georgetown University, 37th and O St, NW, Washington, DC, 20057, USA; E-mail: yyt@georgetown.edu

Preparation of working electrodes: the as-synthesized Au@Pt NPs or the commercial Pt black (courtesy of Johnson-Matthey) were transferred into a mixed solution composed of 1 mL 2-propanol and 5 μ L 5 wt.% Nafion[®] (Du Pont, Inc) solution. The mixed solution was then sonicated for at least 10 min to form a uniform suspension which was drop-cast onto the surface of the supporting GC electrodes. The electrode surface was air dried under a gentle Ar flow and rinsed with a copious amount of Milli-Q water to eliminate loosely attached NPs.

Estimation of the Pt PDs: The Pt packing densities were estimated as follows. For an ideal *n*-layer cubo-octahedral NP of fcc (face-centered cubic) crystal structure, the numbers of total (N_{total}) and surface ($N_{\text{surf.}}$) atoms can be express as²⁶:

$$N_{\text{total}} = (10/3)n^3 - 5n^2 - (11/3)n - 1 \ (n \ge 1)$$
(1)

$$N_{\text{surf.}} = 10n^2 - 20n + 12$$
 $(n \ge 2)$ (2)

On the other hand, for a TEM measured NP of diameter *d*, the total number of atoms in the NP can be calculated by

(3)

$$N_{\rm total} = (2\pi/3)(d/a)^3$$

where *a* is the lattice constant (0.408 nm for Au and 0.392 nm for Pt). For the Au core NPs, the layer number *n* was determined by equating Eq. (1) to (3) and solving the equation for *n*. Once the *n* was determined, the corresponding $N_{surf.}$ was calculated using eq. 2. The dispersion of the NPs, $N_{surf.}/N_{total}$, was so calculated respectively for the three Au-seed NPs: 37%, 21% and 7.9% respectively. For a Au@Pt NP of size $d_{Au@Pt}$, the number of Pt atoms was estimated by $N_{Pt} = (2\pi/3)(d^3_{Au@Pt} - d^3_{Au\ core})/a_{Pt}^3$ and the corresponding Pt packing density by $N_{Pt}/N_{surf.}$. The so calculated Pt packing densities are collected in Table 1.

Figure S1. The TEM images, UV-Vis spectra, and size distributions (~250 counts) of the 3.3 nm (A), the 5.2 nm (B) and the 17.5nm (C) Au NPs. The SPR peak positions are 514 nm, 517 nm, and 519 nm respectively.

Figure S2. The TEM images and corresponding size distributions of the Au@Pt NPs with the 3.3nm Au core: (A) Au(S)@Pt-0.24, (B) Au(S)@Pt-0.54, (C) Au(S)@Pt-0.83, (D) Au(S)@Pt-1.07, (E) Au(S)@Pt-1.50, (F) Au(S)@Pt-2.60. The average particle sizes are 3.50nm, 3.49nm, 3.51nm, 3.52nm, 3.59nm and 3.64nm respectively. The scale bars equal to 20nm.

Figure S3. The TEM images and corresponding size distributions of the Au@Pt NPs with the 5.2nm Au core: (A) Au(M)@Pt-0.09, (B) Au(M)@Pt-0.34, (C) Au(M)@Pt-0.94, (D) Au(M)@Pt-1.22, (D) Au(M)@Pt-2.00, (D) Au(M)@Pt-2.22. The average particle sizes are 5.23nm, 5.46nm, 5.67nm, 5.97nm, 6.02nm and 6.13nm respectively. The scale bars equal to 20nm.

Figure S4. The TEM images and corresponding size distributions of the Au@Pt NPs with the 17.5 nm Au core: (A) Au(L)@Pt-0.74, (B) Au(L)@Pt-0.94, (C) Au(L)@Pt-1.3, (D) Au(L)@Pt-2.0, (E) Au(L)@Pt-3.0, and Au(L)@Pt-3.4. The average particle sizes are 17.9 nm, 18.0 nm, 18.6 nm, 18.7 nm, 18.7 nm and 18.8 nm respectively. The scale bars equal to 50 nm.

Figure S5. The CVs of (A) the Au(S)@Pt-0.24 and 3.3nm Au NPs (red curve as a reference), (B) the Au(S)@Pt-0.54 NPs, Au(S)@Pt-0.83 NPs, and (D) Au(S)@Pt-1.07 NPs, (E) Au(S)@Pt-1.50, (F) Au(S)@Pt-2.60 and J-M Pt black(dashed curve). In (F), the arrow highlight the suppression of the formation of Pt oxides on Au(S)@Pt in general.

Figure S6. The CVs of (A) the Au(M)@Pt-0.09 and 5.2nm Au NPs (red curve as a reference), (B) the Au(M)@Pt-0.34 NPs, Au(M)@Pt-0.94 NPs, and (D) Au(M)@Pt-1.49 NPs, (E) Au(M)@Pt-2.00, (F) Au(M)@Pt-2.22 and J-M Pt black(dashed curve). In (F), the arrows (red for J-M Pt and black for Au@Pt) highlight the suppression of the formation of Pt oxides on Au(M)@Pt in general.

Figure S7. The MOR CVs of (A) the Au(S)@Pt-0.24, (B) the Au(S)@Pt-0.54 NPs, Au(S)@Pt-0.83 NPs, and (D) Au(S)@Pt-1.07 NPs, (E) Au(S)@Pt-1.50, (F) Au(S)@Pt-2.60 and J-M Pt black(dashed curve).

Figure S8. The MOR CVs of (A) the Au(M)@Pt-0.09, (B) the Au(M)@Pt-0.34 NPs, Au(M)@Pt-0.94 NPs, and (D) Au(M)@Pt-1.49 NPs, (E) Au(M)@Pt-2.00, (F) Au(M)@Pt-2.22 and J-M Pt black(dashed curve).