Electronic Supplementary Information

Peter BOTSCHWINA* and Rainer OSWALD Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany

Otto DOPFER

Institut für Optik und Atomare Physik, Technische Universität Berlin Hardenbergstrasse 36, 10623 Berlin, Germany

Weak interactions in ion-ligand complexes of $C_3H_3^+$ isomers: Competition between H-bound and C-bound structures in $c-C_3H_3^+ \cdot L$ and $H_2CCCH^+ \cdot L$ (L = Ne, Ar, N₂, CO₂, and O₂)

17 tables

Tables S1-S13 provide the input for the radial energy profiles which are displayed in Figures 2-5 of the paper. Intramolecular harmonic vibrational wavenumbers for Ne and Ar complexes of $c-C_3H_3^+$ and $H_2C_3H^+$ are listed in Tables S14-S17.

TABLE S1. CCSD(T*)-F12a relative energies for neon migration around rigid $c-C_3H_3^+$

θ_1 (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$
0	4.2368	-182.9
2.5	4.2351	-182.7
15	4.1703	-177.5
30	3.9621	-173.3
45	3.6303	-188.6
60	3.3431	-208.3
61	3.3311	-208.5
62	3.3201	-208.6
63	3.3101	-208.5
64	3.3010	-208.3
75	3.2471	-200.4
90	3.2353	-193.3
105	3.2471	-198.0
120	3.2968	-203.1
122	3.3066	-203.3
124	3.3169	-203.3
135	3.3815	-201.9
150	3.4713	-197.1
165	3.5366	-192.9
180	3.5600	-191.3

perpendicular to molecular plane.^a

^a Basis A: VQZ-F12(C,H), AV5Z (Ne). Equilibrium structure of c-C₃H₃⁺:

 $r_e(CH) = 1.07947$ Å and $R_e(CC) = 1.36253$ Å.

TABLE S2.
 CCSD(T*)-F12a relative energies for in-plane neon migration

around	rigid	0	\mathbf{C}	\mathbf{H}^+	а
alounu	ngiu	U-	C 3.	113	•

$ heta_2$ (°)	R^{opt} (Å)	$E_{rel} (cm^{-1})$
0	4.2368	-182.9
2.5	4.2351	-182.7
7.5	4.2211	-181.1
15	4.1727	-176.6
22.5	4.0911	-172.0
30	3.9778	-170.0
32.5	3.9338	-170.3
37.5	3.8401	-172.7
45	3.7013	-180.0
52.5	3.5973	-187.9
57.5	3.5642	-190.9
60	3.5600	-191.3

^a Basis A: VQZ-F12(C,H), AV5Z (Ne). Equilibrium structure of $c-C_3H_3^+$: r_e(CH) = 1.07947 Å and R_e(CC) = 1.36253 Å.

θ ₁ (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$
0	4.6185	-206.5
15	4.5289	-194.5
30	4.2429	-181.1
45	3.7822	-193.0
60	3.4318	-194.4
75	3.3231	-167.5
90	3.2935	-160.0
105	3.3027	-182.5
120	3.3814	-226.0
127	3.5069	-238.8
128	3.5267	-239.3
129	3.5486	-239.5
130	3.5726	-239.4
131	3.5968	-239.0
135	3.7022	-234.8
150	4.1265	-205.6
165	4.4253	-187.0
180	4.5276	-181.7

TABLE S3. CCSD(T*)-F12a relative energies for neon migration around rigid $H_2C_3H^+$ perpendicular to molecular plane.^a

^a Basis: VQZ-F12(C,H), AV5Z (Ne). Equilibrium structure for $H_2C_3H^+$: $r_{1e}(CH_2) = 1.08721$ Å, $\alpha_e(HCH) = 119.32^\circ$, $R_{1e}(C-C) = 1.34894$ Å, $R_{2e}(C\equiv C) = 1.23044$ Å, and $r_{2e}(CH) = 1.07411$ Å.

θ_1 (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$
0	4.6185	-206.5
2.5	4.6163	-206.0
15	4.5416	-189.5
30	4.3135	-160.2
45	3.9991	-139.4
60	3.7256	-126.1
75	3.4809	-132.8
90	3.2568	-179.7
105	3.3889	-206.2
120	3.8990	-181.5
135	4.3280	-175.3
150	4.5457	-169.6
165	4.5842	-171.2
177.5	4.5303	-181.2
180	4.5276	-181.7

TABLE S4. CCSD(T*)-F12a relative energies for in-plane neon migration around rigid $H_2C_3H^+$.^a

^a Basis: VQZ-F12(C,H), AV5Z (Ne). Equilibrium structure for $H_2C_3H^+$: $r_{1e}(CH_2) = 1.08721$ Å, $\alpha_e(HCH) = 119.32^\circ$, $R_{1e}(C-C) = 1.34894$ Å, $R_{2e}(C\equiv C) = 1.23044$ Å, and $r_{2e}(CH) = 1.07411$ Å.

TABLE S5.	CCSD(T*)-F12a relative energies for radial N ₂ migration around rigid c- $C_3H_3^+$
	perpendicular to molecular plane. ^a

θ ₁ (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$	θ ₁ (°)	$R^{opt}(A)$	$E_{rel} (cm^{-1})$
0	4.6672	-1173.6	97.5	3.8418	-928.1
2.5	4.6664	-1170.5	105	3.8434	-945.3
7.5	4.6600	-1147.3	112.5	3.8537	-963.1
15	4.6349	-1083.4	115	3.8599	-967.7
22.5	4.5798	-1013.1	117.5	3.8677	-971.4
30	4.4836	-963.7	120	3.8770	-973.9
37.5	4.3426	-950.2	122.5	3.8879	-975.1
45	4.1694	-972.8	125	3.9002	-975.1
52.5	4.0037	-1009.7	127.5	3.9139	-973.8
57.5	3.9221	-1022.5	135	3.9613	-963.3
60	3.8929	-1022.1	142.5	4.0137	-946.1
62.5	3.8711	-1017.3	150	4.0652	-926.7
65	3.8560	-1008.6	157.5	4.1105	-908.8
67.5	3.8462	-997.2	165	4.1454	-894.9
75	3.8377	-958.4	172.5	4.1673	-886.2
82.5	3.8408	-929.9	177.5	4.1740	-883.6
90	3.8425	-920.5	180	4.1748	-883.1

^a Basis: VTZ-F12 (C, H), AVQZ (N₂). Equilibrium structures: a) $c-C_3H_3^+$: $r_e(CH) = 1.07973$ Å and $R_e(CC) = 1.36318$ Å; b) N₂: $R_e = 1.09938$ Å.

θ_2 (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$	θ ₁ (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$
0	4.6672	-1173.6	62.5	4.1787	-882.7
2.5	4.6667	-1170.2	67.5	4.2088	-878.9
7.5	4.6620	-1144.3	75	4.2999	-873.0
15	4.6419	-1071.8	82.5	4.4164	-882.3
22.5	4.5978	-988.0	90	4.5220	-920.4
30	4.5220	-920.4	97.5	4.5978	-988.0
37.5	4.4164	-882.3	105	4.6419	-1071.8
45	4.2999	-873.0	112.5	4.6620	-1144.3
52.5	4.2088	-878.9	117.5	4.6667	-1170.2
57.5	4.1787	-882.7	120	4.6672	-1173.6
60	4.1748	-883.3			

TABLE S6. CCSD(T*)-F12a relative energies for in-plane N_2 migration around rigid $c-C_3H_3^+$ along a radial path.^a

^a Basis: VTZ-F12 (C, H), AVQZ (N₂). Equilibrium structures: a) $c-C_{3}H_{3}^{+}$: $r_{e}(CH) = 1.07973$ Å and $R_{e}(CC) = 1.36318$ Å; b) N₂: $R_{e} = 1.09938$ Å.

θ ₁ (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$	θ ₁ (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$
0	5.0422	-1337.2	97.5	3.9094	-780.0
2.5	5.0414	-1331.3	105	3.8908	-860.6
7.5	5.0336	-1287.6	112.5	3.8663	-991.1
15	4.9986	-1172.8	120	3.8547	-1158.8
22.5	4.9167	-1055.1	125	3.8754	-1260.3
30	4.7666	-978.9	130	3.9435	-1313.3
37.5	4.5376	-963.3	135	4.0751	-1295.5
45	4.2538	-1002.6	140	4.2552	-1228.1
52.5	4.0176	-1032.6	150	4.6203	-1080.9
60	3.9150	-977.0	157.5	4.8369	-1009.5
67.5	3.8981	-876.0	165	4.9627	-963.0
75	3.9075	-792.9	172.5	5.0752	-947.5
82.5	3.9167	-748.5	177.5	5.1028	-942.2
90	3.9178	-744.2	180	5.1044	941.5

TABLE S7. CCSD(T*)-F12a relative energies for radial N_2 migration around rigid $H_2C_3H^+$ perpendicular to molecular plane.^a

^a Basis: VTZ-F12 (H₂C₃H⁺), AVQZ (N₂). Equilibrium structures: a) H₂C₃H⁺: r_{1e} (CH₂) = 1.08745 Å, α_e (HCH) = 119.33°, R_{1e} (C-C) = 1.34948 Å, R_{2e} (C=C) = 1.23101 Å, and r_{2e} (CH) = 1.07430 Å; b) N₂: R_e = 1.09938 Å.

θ_1 (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$	θ ₁ (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$
0	5.0422	-1337.2	105	3.9716	-936.3
2.5	5.0414	-1329.2	112.5	4.1875	-945.6
7.5	5.0381	-1275.6	115	4.2636	-951.3
15	5.0199	-1131.0	120	4.4081	-971.6
22.5	4.9715	-970.4	125	4.5373	-1001.6
30	4.8820	-836.9	127.5	4.5959	-1018.3
45	4.6081	-673.6	135	4.7512	-1062.0
52.5	4.4693	-626.2	142.5	4.8827	-1075.8
60	4.3470	-596.0	150	4.9916	-1050.7
62.5	4.3080	-590.8	157.5	5.0698	-1004.0
67.5	4.2289	-590.1	165	5.1076	-963.6
75	4.0998	-618.6	172.5	5.1097	-944.7
82.5	3.9634	-690.1	180	5.1044	-941.5
90	3.8574	-797.6			

TABLE S8. CCSD(T*)-F12a relative energies for in-plane N_2 migration around rigid $H_2C_3H^+$ along a radial path.^a

^a Basis: VTZ-F12 (H₂C₃H⁺), AVQZ (N₂). Equilibrium structures: a) H₂C₃H⁺: r_{1e} (CH₂) = 1.08745 Å, α_e (HCH) = 119.33°, R_{1e} (C-C) = 1.34948 Å, R_{2e} (C=C) = 1.23101 Å, and r_{2e} (CH) = 1.07430 Å; b) N₂: R_e = 1.09938 Å.

TABLE S9.	CCSD(T*)-F12a relative energies for radial CO ₂ migration around rigid c- $C_3H_3^+$
	perpendicular to molecular plane. ^a

θ_1 (°)	$R^{opt}(A)$	$E_{rel} (cm^{-1})$	θ ₁ (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$
0	5.0512	-1932.1	97.5	4.0979	-1800.5
2.5	5.0495	-1929.9	105	4.1084	-1818.0
7.5	5.0359	-1912.0	112.5	4.1306	-1831.9
15	4.9895	-1861.1	115	4.1409	-1834.0
22.5	4.9108	-1800.7	117.5	4.1528	-1834.4
30	4.7984	-1756.4	120	4.1660	-1833.1
37.5	4.6529	-1749.4	122.5	4.1806	-1830.0
45	4.4853	-1786.0	125	4.1964	-1825.2
52.5	4.3238	-1844.6	127.5	4.2133	-1818.7
57.5	4.2373	-1873.6	135	4.2681	-1791.8
60	4.2046	-1880.8	142.5	4.3249	-1758.6
62.5	4.1751	-1882.1	150	4.3784	-1725.1
65	4.1529	-1878.4	157.5	4.4241	-1696.0
67.5	4.1358	-1870.5	165	4.4588	-1674.1
75	4.1072	-1834.2	172.5	4.4804	-1660.6
82.5	4.0975	.1802.9	177.5	4.4870	-1656.6
90	4.0952	-1792.1	180	4.4878	-1656.1

^a Basis: VTZ-F12 (C, H), AVQZ (CO₂). Equilibrium structures: a) $c-C_3H_3^+$: $r_e(CH) = 1.07973$ Å and $R_e(CC) = 1.36318$ Å; b) CO₂: $R_e = 1.16209$ Å. TABLE S10. CCSD(T*)-F12a relative energies for in-plane CO₂ migration

θ ₁ (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$
0	5.0512	-1932.1
2.5	5.0496	-1929.5
7.5	5.0370	-1908.8
15	4.9949	-1847.0
22.5	4.9250	-1768.6
30	4.8302	-1698.6
45	4.6027	-1644.9
60	4.4878	-1656.1
75	4.6027	-1644.9
90	4.8302	-1698.6
97.5	4.9250	-1768.6
105	4.9949	-1847.0
112.5	5.0370	-1908.8
117.5	5.0496	-1929.5
120	5.0512	-1932.1

around rigid c- $C_3H_3^+$ along a radial path.^a

^a Basis: VTZ-F12 (C, H), AVQZ (CO₂). Equilibrium structures: a) $c-C_3H_3^+$: r_e (CH) = 1.07973 Å and R_e (CC) = 1.36318 Å; b) CO₂: R_e = 1.16209 Å.

TABLE S11.	$CCSD(T^*)$ -F12a relative energies for radial CO_2 migration around rigid $H_2C_3H^+$
	perpendicular to molecular plane. ^a

θ_1 (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$	θ_1 (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$
0	5.4385	-2134.5	97.5	4.1376	-1555.5
2.5	5.4364	-2129.7	105	4.1304	-1687.0
7.5	5.4176	-2095.5	112.5	4.1311	-1878.7
15	5.3521	-1997.0	120	4.1620	-2086.5
22.5	5.2417	-1877.6	125	4.2130	-2180.4
30	5.0797	-1783.6	130	4.3258	-2200.7
37.5	4.8610	-1749.5	135	4.4788	-2147.1
45	4.6016	-1781.7	142.5	4.7425	-2012.2
52.5	4.3698	-1817.0	150	4.9821	-1895.7
60	4.2364	-1766.2	157.5	5.1708	-1819.3
67.5	4.1830	-1649.3	165	5.3040	-1775.8
75	4.1638	-1542.8	172.5	5.3841	-1754.5
82.5	4.1541	-1486.3	177.5	5.4073	-1749.0
90	4.1459	-1489.6	180	5.4102	-1748.3

^a Basis: VTZ-F12 (C, H), AVQZ (CO₂). Equilibrium structures: a) H₂C₃H⁺: r_{1e} (CH₂) = 1.08745 Å, α_e (HCH) = 119.33°, R_{1e} (C-C) = 1.34948 Å, R_{2e} (C≡C) = 1.23101 Å, and r_{2e} (CH) = 1.07430 Å;
b) CO₂: R_e = 1.16209 Å.

θ ₁ (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$	θ_1 (°)	$R^{opt}(A)$	$E_{rel} (cm^{-1})$
0	5.4388	-2134.4	105	4.2968	-1708.0
2.5	5.4369	-2128.2	112.5	4.4939	-1740.5
15	5.3678	-1945.7	120	4.7159	-1770.2
22.5	5.2833	-1764.4	125	4.8572	-1793.9
30	5.1690	-1583.9	135	5.1050	-1825.9
45	4.8785	-1318.8	142.5	5.2519	-1819.9
52.5	4.7353	-1235.4	150	5.3582	-1791.0
60	4.6087	-1182.6	157.5	5.4187	-1757.1
67.5	4.4917	-1170.4	165	5.4347	-1738.5
75	4.3750	-1212.5	172.5	5.4216	-1741.6
82.5	4.2631	-1317.9	177.5	5.4119	-1747.4
90	4.1849	-1473.3	180	5.4105	-1748.3

TABLE S12. CCSD(T*)-F12a relative energies for in-plane CO_2 migration around rigid $H_2C_3H^+$ along a radial path.^a

^a Basis: VTZ-F12 (C, H), AVQZ (CO₂). Equilibrium structures: a) H₂C₃H⁺: r_{1e} (CH₂) = 1.08745 Å, α_e (HCH) = 119.33°, R_{1e} (C-C) = 1.34948 Å, R_{2e} (C≡C) = 1.23101 Å, and r_{2e} (CH) = 1.07430 Å;
b) CO₂: R_e = 1.16209 Å.

TABLE S13. UCCSD(T*)-F12a relative energies for radial O_2 migration around rigid $c-C_3H_3^+$ perpendicular to molecular plane.^a

θ_1 (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$	θ_1 (°)	R ^{opt} (Å)	$E_{rel} (cm^{-1})$
0	4.7062	-635.9	97.5	3.6584	-726.8
2.5	4.7022	-635.8	105	3.6731	-732.8
7.5	4.6836	-635.5	112.5	3.6998	-737.0
15	4.6228	-635.5	115	3.7117	-737.4
22.5	4.5279	-635.7	117.5	3.7243	-737.3
30	4.4039	-639.0	120	3.7377	-736.5
37.5	4.2553	-651.0	122.5	3.7529	-735.1
45	4.0902	-675.9	125	3.7686	-733.1
52.5	3.9289	-709.5	127.5	3.7850	-730.7
57.5	3.8381	729.2	135	3.8315	-721.4
60	3.8001	-736.4	142.5	3.8894	-709.0
62.5	3.7676	-741.2	150	3.9379	-697.5
65	3.7406	-743.8	157.5	3.9790	-687.7
67.5	3.7186	-744.1	165	4.0101	-680.4
75	3.6763	-737.0	172.5	4.0291	-676.0
82.5	3.6586	-727.5	177.5	4.0349	-674.7
90	3.6560	-723.6	180	4.0356	-674.5

^a Basis: VTZ-F12 (C, H), AVQZ (O₂). Equilibrium structures: a) $c-C_3H_3^+$: $r_e(CH) = 1.07973$ Å and $R_e(CC) = 1.36318$ Å; b) O₂: $R_e = 1.20662$ Å.

Table S14.	CCSD(T*)-F12a intramolecular harmonic vibrational wavenumbers (in cm ⁻¹)
	for different structures of $c-C_3H_3^+$ · Ne and for free $c-C_3H_3^+$.

No. of vibration ^b	C _s Min 1	C _s Min 2	$C_{2\nu}$ Min	$c-C_{3}H_{3}^{+}$
1	3304.1 (a')	3303.3 (a')	3303.0 (a ₁)	3302.6 (a ₁)
2	3258.4 (a'')	3257.2 (a'')	3257.0 (b ₂)	3256.1 (e')
3	3257.2 (a')	3256.9 (a')	3256.1 (a ₁)	3256.1 (e')
4	1642.8 (a')	1642.6 (a')	1642.5 (a ₁)	1641.8 (a ₁)
5	1319.3 (a')	1319.3 (a')	1319.3 (a ₁)	1318.8 (e')
6	1319.1 (a'')	1319.0 (a'')	1318.4 (b ₂)	1318.8 (e')
7	1049.8 (a'')	1049.6 (a'')	1050.9 (b ₂)	$1050.4(a_2)$
8	1016.1 (a')	1016.0 (a')	1019.5 (b ₁)	1016.4 (e'')
9	1015.8 (a'')	1015.9 (a'')	1016.5 (a ₂)	1016.4 (e'')
10	942.6 (a'')	942.4 (a'')	945.0 (b ₂)	943.3 (e')
11	942.3 (a')	942.0 (a')	942.3 (a ₁)	943.3(e')
12	760.3 (a')	759.0 (a')	761.8 (b ₁)	761.2 (a ["] ₂)

No. of vibration ^b	C _s Min 1	C _s Min 2	C _s planar	$C_{2\nu}$ Min	$H_2C_3H^+$
1	3358.3 (a')	3359.5 (a')	3358.0 (a')	3351.1 (a ₁)	3357.6 (a ₁)
2	3226.7 (a'')	3224.8 (a'')	3226.4 (a')	3225.0 (b ₂)	3225.1 (b ₂)
3	3116.8 (a')	3115.1 (a')	3116.4 (a')	3115.3 (a ₁)	3115.3 (a ₁)
4	2121.2 (a')	2120.2 (a')	2121.1 (a')	2120.0 (a ₁)	2120.9 (a ₁)
5	1479.1 (a')	1479.0 (a')	1477.6 (a')	1479.2 (a ₁)	1478.9 (a ₁)
6	1132.1 (a')	1133.1 (a')	1132.1 (a')	1133.1 (a ₁)	1132.4 (a ₁)
7	1117.6 (a')	1115.9 (a')	1118.1 (a'')	1116.4 (b ₁)	1117.0 (b ₁)
8	1036.4 (a'')	1036.4 (a'')	1036.7 (a')	1036.6 (b ₂)	1038.4 (b ₂)
9	875.2 (a')	876.8 (a')	875.8 (a'')	882.4 (b ₁)	876.2 (b ₁)
10	624.9 (a'')	624.7 (a'')	623.3 (a')	634.2 (b ₂)	624.5 (b ₂)
11	287.7 (a'')	287.9 (a'')	288.7 (a')	287.9 (b ₂)	287.2 (b ₂)
12	256.6 (a')	257.7 (a')	254.0 (a'')	255.5 (b ₁)	254.0 (b ₁)

Table S15.CCSD(T*)-F12a intramolecular harmonic vibrational wavenumbers (in cm $^{-1}$) for
different structures of $H_2C_3H^+ \cdot Ne$ and for free $H_2C_3H^{+,a}$

Table S16.	CCSD(T*)-F12a intramolecular harmonic vibrational wavenumbers (in cm ⁻¹)
	for different structures of $c-C_3H_3^+ \cdot Ar$. ^a

No. of vibration ^b	C _s Min 1	$C_{2\nu}$ Min
1	3304.9 (a')	3297.4 (a ₁)
2	3259.8 (a'')	3256.6 (b ₂)
3	3257.1 (a')	3236.5 (a ₁)
4	1642.0 (a')	1640.4 (a ₁)
5	1318.6 (a')	1318.8 (a ₁)
6	1317.9 (a'')	1316.0 (b ₂)
7	1050.1 (a'')	1053.8 (b ₂)
8	1014.6 (a')	1025.1 (b ₁)
9	1011.9 (a'')	1016.2 (a ₂)
10	943.4 (a'')	950.8 (b ₂)
11	943.2 (a')	942.9 (a ₁)
12	760.7 (a')	766.6 (b ₁)

No. of vibration ^b	C _s Min 1	C _s Min 2	C _s planar	$C_{2\nu}$ Min
1	3362.5 (a')	3363.7 (a')	3359.4 (a')	3314.2 (a ₁)
2	3231.5 (a'')	3225.7 (a'')	3225.2 (a')	3225.5 (b ₂)
3	3121.3 (a')	3116.3 (a')	3114.3 (a')	3116.3 (a ₁)
4	2121.6 (a')	2117.3 (a')	2121.0 (a')	2116.4 (a ₁)
5	1479.0 (a')	1478.8 (a')	1473.6 (a')	1479.8 (a ₁)
6	1129.7 (a')	1134.8 (a')	1131.7 (a')	1134.0 (a ₁)
7	1114.5 (a')	1111.9 (a')	1120.3 (a'')	1115.8 (b ₁)
8	1036.8 (a'')	1036.0 (a'')	1036.3 (a')	1037.4 (b ₂)
9	871.0 (a')	872.8 (a')	875.4 (a'')	897.8 (b ₁)
10	627.6 (a'')	622.9 (a'')	621.6 (a')	658.7 (b ₂)
11	290.9 (a'')	288.8 (a'')	287.3 (a')	289.2 (b ₂)
12	270.6 (a')	269.1 (a')	253.8 (a'')	258.5 (b ₁)

Table S17. Intramolecular harmonic vibrational wavenumbers and shifts (in cm⁻¹) for Cs and
 C_{2v} structures of $H_2C_3H^+ \cdot Ar$.^a