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Figure SI1. Absorption spectrum of SBPa and PCM-TD-/6-311++G(2d,p)//PBE0/6-311G(d) oscillator 
strength for different functionals PBE0, B3LYP, BMK, BHandBLP in acetonitrile. 

 

 ACN THF Toluene 

Exp 3.1872                  exp-theo 2.9590                     exp-theo 2.8307                    exp-theo 

B3LYP            (20%) 2.9085 (S2) 0.2787 2.8019 (S2) 0.1571 2.5719  (S2) 0.2588 

PBE0               (25%) 3.0490 (S2) 0.1382 2.9353 (S2) 0.0237 2.6828 (S2) 0.1479 

BMK               (42%) 3.4279 (S2) -0.2407 3.3022 (S2) -0.3432 3.0032 (S2) -0.1725 

BHandHLYP  (50%) 3.5291 (S1) -0.3419 3.3965 (S1) -0.4375 3.0672 (S1) -0.2365 

Table SI1:  Experimental and TDDFT theoritical CT band position in eV for different functionals. The 

main electronic state involved is indicated in parentheses. 

 

 Basis Vaccum THF ACN 

PBE0 

6-311++g(d,p) 4.92 4.52 4.74 

6-311g(d,p) 4.61 4.95 4.83 

6-31g 4.66 4.67 4.62 

Table SI2: DFT/PCM Calculated Onsager radii (in Ǻ) for SBPa in vacuum, in THF, and in acetonitrile 
using the PBE0 functional with different basis sets. 
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INNOVATIVE PHYSICAL SOLVATOCHROMIC DATA TREATMENT 

The inputs of our algorithm are the experimental solvatochromic data      
     or       

     and 

the solvent properties n and  while the adjustable parameters are the molecular polarizability 

α and gas phase absorption/emission band maxima      
   

       
   

. The main idea of this 

approach is based on the principle that the best set of          
   

 and α parameters should lead 

to the most accurate non-linear fit of the solvatochromic data according to eq 5 (main article). 

Thus, we have imagined to plot in a 2D map the variation of the mean square coefficient 
2
 

characterizing this non linear fit as a function of both the          
   

 and α values. Analyzing 

this 2D map should allow to visualize directly the optimum values of          
   

 and α. The 

algorithm core (double implementation structure), illustrated in figure SI1, can be described 

as follows: 

STEP 1: the experimental data      
     or       

      measured for a given set of solvents 

      are selected. Appropriate intervals for the adjustable parameters          
   

 and α are 

chosen. The polarizability is scanned within the [0; 1.2] interval while     
   

 and      
   

 are 

scanned within the [15000; 28000 cm
-1

] and [10000; 17000 cm
-1

] frequency intervals, 

respectively. 

STEP 2: 

 a) a pair of          
   

 and α values is implemented in the loop. The 2 functions 𝑔        

and 𝑕      (eqs. 2 and 3) and                     
             

   
 (left side of eq. 4) are 

determined.   

b) Then the            values are plotted for all solvents as a function of 𝑔        and 

𝑕      in a 3D graph            = f[𝑔       , 𝑕     ]. 

c) Non-linear fits of            by the equation plane   𝑔           𝑕      (eq. 5) is 

performed and the fitted parameters K1 and K2 as well as 
2
 are stored. 

Then the          
   

 and α values are incremented step by step within their respective 

intervals. For each set of values, the above operations a – c listed in step 2 are repeated until 

the overall chosen ranges are spanned by the procedure. 

STEP 3: a 2D map of 
2
 as a function of the          

   
 and α values is built and its 

minimum value is detected. Alternatively, other interesting regions of the 2D map can be 

tested. 

STEP 4: for the selected points chosen above, µg(S0), µe(S2) (abs) or µe(S1) µg(S0’) (emiss) 

are computed from K1 and K2 according to eq.6-9 after implementing an Onsager radius of 

4.75 Å (DFT calculations; see table SI2) and a phase value  = 0 or . 
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figure SI2.  Overall illustration of the 4 step algorithm related to the Innovative physical 

solvatochromic data treatment. 

 

Solvatochromic Data Treatment Algorithm 

GOAL= determinations of 2 dipole moments 

3 inputs: 
Set of solvant values:  𝒏, 𝜺  

Solvatochromic data:  𝝂𝑨𝒃𝒔
𝒔𝒐𝒍   or  𝝂𝑭𝒍𝒖𝒐

𝒔𝒐𝒍   
                   2 outputs: 

            µg(S0), µe(S2) (absorption) or 

             µe(S1),  µg(S0’) (emission) 2 adjustable 
parameters: 

𝝂𝑨𝒃𝒔
𝒈𝒂𝒛

  or 𝝂𝑭𝒍𝒖𝒐
𝒈𝒂𝒛

 (gas phase!)   

and polarizability α. 

STEP 1 One chooses appropriate intervals for [𝝂𝑨𝒃𝒔/𝒇𝒍𝒖𝒐
𝒈𝒂𝒛

] and [α]. 

STEP 2 
 

a) For a pair of values (𝝂𝑨𝒃𝒔/𝑭𝒍𝒖𝒐
𝒈𝒂𝒛

 ; α) 

     one computes:   

 𝑔 𝒏, 𝜺,    
 𝑕 𝒏, 𝜶  

    𝐴𝑏𝑠/𝐹𝑙𝑢𝑜 =  𝐴𝑏𝑠/𝐹𝑙𝑢𝑜
𝑠𝑜𝑙  𝝂𝑨𝒃𝒔/𝑭𝒍𝒖𝒐

𝒈𝒂𝒛
 

 

 

b) one plots 3D graph 

  

c) Non-linear fit:   𝑎𝑏𝑠 /𝑓𝑙𝑢𝑜 = 𝑲𝟏𝑔  ,  ,     𝑲𝟐𝑕  ,    
                                                                                      K1, K2 and 2 are stored 

                   

                                operation a)-c) repeated until both [𝝂𝑨𝒃𝒔/𝒇𝒍𝒖𝒐
𝒈𝒂𝒛

] and [α] are spanned 

STEP 3 
 

2D Map are plotted 

2 =f( 𝐴𝑏𝑠/𝐹𝑙𝑢𝑜
𝑔𝑎𝑧

; α)  
 

 identification of true minimum or 
other relevant points 

 
         

STEP 4 
 

 
For the selected points : 
 

 K1, K2 
 Onsager radius=4.75 Å 

 Phase =0 or  
 

 
 

 

  𝐴𝑏𝑠/𝐹𝑙𝑢𝑜 = f[𝑔  ,  ,   ,𝑕  ,   ] 
𝑔  ,  ,    

𝑕  ,    

  𝐴𝑏𝑠/𝐹𝑙𝑢𝑜  

True Minimum 

Interesting region 

𝜇𝑔 𝑆0 =  
1

 4𝜋 0𝑎
3

 1

 2  1    2 
 

𝜇𝑒 𝑆2 =  
(𝑐𝑜𝑠𝜃) 1

 4𝜋 0𝑎
3

 2

 2  1    2 
  

 

𝜇𝑔
′  𝑆0

′
.
 =  

1

 4𝜋 0𝑎
3

2 2    1

 2  1    2 
 

𝜇𝑒 𝑆1 =  
(𝑐𝑜𝑠𝜃) 1

 4𝜋 0𝑎
3

 1

 2  1    2 
 

 

absorption 

emission 
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Figure SI3. Transition energy and transition moment of the solvatochromic CT band of SBPa (see fig 1 
and Table 2) in Toluene, THF, ACN and MeOH. The extrapolated values for vacuum are indicated. 
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