Supporting Information for:

Natural abundance solid-state ⁶⁷Zn NMR characterization of microporous zinc phosphites and zinc phosphates at ultrahigh magnetic field

by Andre Sutrisno, Li Liu, Jun Xu and Yining Huang*

Contribution from:

Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.

Experimental details for ³¹ P, ¹³ C, ¹⁹ F, ²⁷ Al and ^{6/7} Li MAS NMR acquired at 9.4 T	Page S2
Table S1: Detailed ⁶⁷ Zn SSNMR experimental conditions	Page S2
Table S2: Bond distances and angles for the Zn-based materials investigated in this study	Page S3
Table S3: Calculated 67 Zn C_Q values on zinc phosphite model cluster	Page S4
Table S4: Summary of all experimental and calculated CSA parameters for ZnPO-Li-ABW	Page S4
Figure S1: Powder XRD spectra of all the materials studied in this work	Page S5
Figure S2: ³¹ P MAS NMR spectra of the materials studied in this work at 8 kHz	Page S6
Figure S3: ¹³ C MAS NMR spectra of the materials studied in this work at 10 kHz	Page S7
Figure S4: ¹⁹ F MAS NMR spectrum of NTHU-5 at 8 kHz	Page S8
Figure S5: ²⁷ Al MAS NMR spectra of NTHU-5 at 8 kHz	Page S8
Figure S6: ^{6/7} Li MAS NMR spectra of ZnPO-Li-ABW	Page S9
Figure S7: ⁶⁷ Zn MAS NMR spectrum of ZnHPO ₃ -CJ1 at 21.1 T	Page S10
Figure S8: Static ⁶⁷ Zn QCPMG NMR spectrum of ZnHPO ₃ -CJ1 at 9.4 T	Page S10
Figure S9: Static ⁶⁷ Zn QCPMG NMR spectra of ZnPO-Li-ABW at 9.4 T	Page S11
Figure S10: Simulation of static spectra acquired at 21.1 T for ZnPO-Li-ABW	Page S12

Experimental details for ³¹P, ¹³C, ¹⁹F, ²⁷Al and ^{6/7}Li MAS NMR experiments acquired at 9.4 T.

All the ³¹P, ¹³C, ¹⁹F, ²⁷Al and ^{6/7}Li MAS NMR spectra of all the materials studied were acquired at 9.4 T on a Varian Infinity Plus 400 WB spectrometer using either a 4-mm HXY or a 5-mm HFXY T3 MAS probe [$v_0 = 161.7$, 100.4, 375.8, 104.1, 58.8 and 155.3 MHz for ³¹P, ¹³C, ¹⁹F, ²⁷Al, ⁶Li and ⁷Li respectively]. Standard samples used for pulse calibration and chemical shift referencing were ADP (NH₄H₂PO₄, solid, $\delta_{iso} = 0.0$ ppm), adamantane (C₁₀H₁₆, solid, $\delta_{iso} = 38.5$ ppm for higher frequency resonance), TFT (C₆H₅CF₃, 1 M solution, $\delta_{iso} = -65.4$ ppm), Al(NO₃)₃ (1 M solution, $\delta_{iso} = 0.0$ ppm) and LiCl (1 M solution, $\delta_{iso} = 0.0$ ppm) for ³¹P, ¹³C, ¹⁹F, ²⁷Al, ^{6/7}Li respectively. A single pulse with proton decoupling was used in all experiments, applying small (< 30°) tip angle.

Sample	Type of experiment	$B_{\theta}(\mathrm{T})$	pulse length (µs)	SW (kHz)	recycle delay (s)	τ _a (μs)	M (# of loops)	τ ₁ (μs)	τ ₂ (μs)	τ ₃ (μs)	τ ₄ (μs)	# scans
	MAS 8 kHz	21.1	4.0	100	2							27132
ZnHPO ₃ -CJ1	static WURST-QCPMG	21.1	50	500	2	500	32	39	40	40	40	7200
	static QCPMG	9.4	2.3	250	4	200	19	25	26	26	27	21664
NTHU-5	static WURST-QCPMG	21.1	50	500	1	200	32	29	30	30	30	83000
ZnHPO ₃ -CN ₃ H ₆	static WURST-QCPMG	21.1	50	500	2	500	32	39	40	40	40	10800
ZnHPO ₃ -PIP	static WURST-QCPMG	21.1	50	500	1	200	32	29	30	30	30	6680
ZnHPO ₃ -DMPIP	static WURST-QCPMG	21.1	50	500	1	200	32	29	30	30	30	3000
ZnPO-Li-ABW	static WURST-QCPMG	21.1	50	500	2	500	32	39	40	40	40	3600
	static QCPMG	9.4	2.3	250	2	200	19	25	26	26	27	2 × 167104

 Table S1. Detailed ⁶⁷Zn SSNMR experimental conditions.

Compound	Zn–O bond distances (Å)	Average Zn–O bond distances (Å)	O–Zn–O bond angles (degrees)	Average O–Zn–O bond angles ± standard deviation (degrees)
ZnHPO ₃ -CJ1 site 1	1.810, 1.850, 1.929, 2.015	1.901	73.8, 106.5, 108.2, 114.6, 119.2, 123.8	107.68 ± 17.83
site 2	1.925(×2), 1.967 (×2)	1.946	105.2, 107.3 (×2), 110.5 (×2), 115.5	109.38 ± 3.64
NTHU-5	1.902, 1.913, 1.935, 1.953	1.926	104.8, 106.6, 106.8, 109.8, 112.2, 115.9	109.35 ± 4.15
ZnHPO ₃ -CN ₃ H ₆	1.937 (×2), 1.952 (×2)	1.945	96.4, 108.6 (×2), 108.7, 117.3 (×2)	109.48 ± 7.69
ZnHPO ₃ -PIP site 1	1.913, 1.922, 1.942, 1.949	1.932	97.6, 105.3, 111.1, 111.4, 112.9, 117.4	109.28 ± 6.92
CASTEP-optimized	1.936, 1.948, 1.961, 1.980	1.956	95.5, 104.7, 109. 9, 111.8, 114.2, 119.0	109.18 ± 8.20
site 2	1.910, 1.925, 1.926, 1.954	1.929	96.4, 103.1, 107.1, 114.3, 115.5, 119.9	109.38 ± 8.78
CASTEP-optimized	1.927, 1.950, 1.952, 1.983	1.953	94.1, 102.9, 105.5, 115.8, 116.3, 122.0	109.43 ± 10.38
ZnHPO ₃ -DMPIP	1.929, 1.933, 1.951, 1.953	1.941	104.1, 105.5, 107.4, 109.2, 110.9, 119.1	109.37 ± 5.36
CASTEP-optimized	1.940, 1.947, 1.967, 1.969	1.956	102.6, 104.3, 108.3, 109.1, 112.3, 119.5	109.35 ± 6.06
ZnPO-Li-ABW	1.845, 1.966, 1.975, 1.983	1.942	99.5, 100.6, 109.2, 113.7, 114.9, 116.2	109.02 ± 7.34
CASTEP-optimized	1.921, 1.964, 1.965, 1.978	1.957	102.3,107.5, 107.6, 108.8, 114.7, 115.6	109.42 ± 4.98

Table S2. Bond distances and angles for the Zn-based materials investigated.

Figure 5	a data	Figure 3	b data	Figure 5c dataFigure 5d		d data	
one Zn–O bond (Å)	C _Q (MHz)	average Zn–O bond (Å)	C _Q (MHz)	one O–Zn–O bond angle (deg.)	C _Q (MHz)	one P–O–Zn bond angle (deg.)	<i>C</i> _Q (MHz)
1.71	28.32			101	7.77	105	2.84
1.73	25.66			102	7.22	110	3.22
1.75	23.12			103	6.68	115	3.59
1.77	20.69			104	6.16	120	3.90
1.79	18.37			105	5.67	125	4.18
1.81	16.16			106	5.22	130	4.43
1.83	14.06	1.83	5.23	107	4.80	135	4.65
1.85	12.05	1.85	5.03	108	4.47	140	4.84
1.87	10.16	1.87	4.84	109	4.22	145	5.01
1.89	8.40	1.89	4.64	110	4.07	150	5.14
1.91	6.81	1.91	4.46	111	4.02	155	5.23
1.93	5.95	1.93	4.30	112	4.09	160	5.28
1.95	5.14	1.95	4.14	113	4.26	165	5.27
1.97	4.36	1.97	3.99	114	4.53		
1.99	4.39	1.99	3.85	115	4.88		
2.01	4.87			116	5.31		
2.03	5.44			117	5.78		
2.05	6.00			118	6.31		
2.07	6.55			119	6.85		
2.09	7.10			120	7.42		

Table S3. Calculated 67 Zn C_Q values of zinc phosphite model cluster

Table S4. Summary	y of all experiment	ntal and calculated CSA	parameters for ZnPO-Li-ABW
···· · · · · · · · · · · · · · · · · ·	r i r r i r		r · · · · · · · · · · · · · · · · · · ·

Method ^a	$\Omega \left(ppm ight)^b$	к ^с
Experimental	50	1.00
CASTEP	220	0.85
CASTEP-optimized	111	-0.30
Cluster I $(ZnO_4P_4O_{12}^{10-})$	238	-0.26
Cluster II (ZnO ₄ P ₄ O ₁₂ Li ₉)	254	-0.11

^{*a*} Basis set used for Gaussian cluster calculations: 6-311G* for Zn atoms, 6-311+G* for O atoms bonded directly to Zn, and 6-31G* for other atoms. The chemical shift tensor is described by three principal components (δ_{11} , δ_{22} , δ_{33}) such that: ^{*b*} $\Omega = \delta_{11} - \delta_{33}$; ^{*c*} $\kappa = 3(\delta_{22} - \delta_{iso})/\Omega$.

simulated

experimental

35

simulated

experimental

35

simulated

experimental

40

40

60

40

30

25

25

30

HE)

Figure S2. ³¹P MAS NMR spectra of the materials studied at 8 kHz. Asterisks (*) indicate spinning sidebands, while number signs (#) indicate impurities present.

Figure S3. ¹³C MAS NMR spectra of the materials studied at 10 kHz. Number signs (#) indicate impurities present.

References for C-13 NMR chemical shifts assignments:

Acyclic and aliphatic amines (a, b and d): H. Eggert and C. Djerassi, J. Am. Chem. Soc., 1973, 95, 3710-3718.

Guanidines (c): L. M. Jackman and T. Jen, J. Am. Chem. Soc., 1975, 97, 2811-2818.

Piperidines (similar to d and e): E. L. Eliel, D. Kandasamy, C.-Y. Yen and K. D. Hargrave, J. Am. Chem. Soc., 1980, 102, 3698-3707.

Figure S4. ¹⁹F MAS NMR spectrum of NTHU-5 at 8 kHz. Asterisks (*) indicate spinning sidebands.

Figure S5. ²⁷Al MAS NMR spectrum of NTHU-5 at 8 kHz. Asterisks (*) indicate spinning sidebands.

Figure S6. a) ⁶Li MAS NMR spectrum of ZnPO-Li-ABW at 6 kHz. b) ⁷Li MAS NMR spectrum of ZnPO-Li-ABW at 8 kHz. Asterisks (*) indicate spinning sidebands.

Figure S7. ⁶⁷Zn MAS NMR spectrum of ZnHPO₃-CJ1 at 21.1 T at 8 kHz.

Figure S8. Static ⁶⁷Zn QCPMG NMR spectrum of ZnHPO₃-CJ1 at 9.4 T.

Figure S9. Static ⁶⁷Zn QCPMG NMR spectra of ZnPO-Li-ABW at 9.4 T

