ELECTRONIC SUPPLEMENTARY INFORMATION

Effects of deposited Pt particles on the

reducibility of CeO₂(111)

Albert Bruix,¹ Annapaola Migani,¹ Georgi N. Vayssilov,² Konstantin M. Neyman,^{*,1,3} Jörg Libuda^{4,5} and Francesc Illas^{*,1}

¹ Departament de Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain

² Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria

³ Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain

⁴ Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany

⁵ Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany

^{*} Corresponding authors. E-mail: konstantin.neyman@icrea.es and francesc.illas@ub.edu

Table S1: Extended Table 4. Calculated oxygen vacancy formation energies $E_{f}(O_{vac})$ in four different positions (Roman numbers) of the Pt_8/CeO_2 system. For a given vacancy position (I to IV) different solutions for the electronic structure are denoted by a superindex (i.e. different number of total unpaired electrons or location and amount of Ce^{3+} centers). $|\mu|_{av} Ce^{3+}$ and $|\mu_T| Pt_8$ correspond to the average magnitude on the Ce^{3+} cations and the total magnitude of the Pt_8 cluster, respectively, and $q(Pt_8)$ is the Bader charge of the Pt_8 cluster.

Model	Vacancy	#Ce ³⁺	$ \mu _{av} \operatorname{Ce}^{3+}(\mu_B)$	$\left \mu_{T}\right Pt_{8}\left(\mu_{B}\right)$	$q(Pt_8)$	$E_{f}(O_{vac}) (eV)$
Opt	I^1	4	0.93	0.02	0.53	2.73
Opt	I^2	4	0.94	1.50	0.56	2.91
Opt	I^3	4	0.93	0.05	0.53	2.76
Opt	II^{1}	3	0.81	0.36	0.01	2.46
Opt	II^2	3	0.87	1.11	0.09	2.48
Opt	II^3	3	0.90	2.37	0.17	2.83
Opt	II^4	4	0.74	0.94	0.16	2.75
Opt	II^{5}	4	0.72	0.79	0.14	2.74
Opt	III^1	4	0.83	0.33	0.48	2.92
Opt	IV^1	5	0.85	0.25	0.76	2.53
Opt	IV^2	5	0.79	0.15	0.65	2.59
Opt	IV ³	4	0.90	0.10	0.63	2.62
Exp	II^{1}	2	0.91	0.06	-0.08	2.34
Exp	IV^1	3	0.94	0.73	0.42	2.70

Table S2: Energy (E_{spill}) of reverse spillover of an oxygen atom from the CeO₂ surface to the supported Pt₈ cluster at the most stable positions of the vacancy O_{vac} and adsorbed atom O_{ads}. $|\mu|_{av}$ Ce³⁺ and $|\mu_T|$ Pt₈ correspond to the average magnitude on the Ce³⁺ cations and the total magnitude of the Pt₈ cluster, respectively. q(Pt₈) is the Bader charge of the Pt₈ cluster.

Model	O _{vac}	O _{ads}	#Ce ³⁺	$ \mu _{av} \operatorname{Ce}^{3^+}(\mu_B)$	$\left \mu_{T}\right Pt_{8}\left(\mu_{B}\right)$	q(Pt ₈)	E _{spill} (eV)
Opt	II	Pt ₂	3	0.85	1.03	0.79	1.00
Opt	II	Pt ₃	3	0.82	0.32	0.88	1.24
Opt	IV	Pt ₂	4	0.89	1.24	1.34	1.25
Exp	II	Pt ₂	3	0.82	0.93	0.82	1.00

Table S3: Energy (E_{ads}) of oxygen adsorption computed with respect to $1/2O_2$ at various O_{ads} positions of the Pt₈ cluster supported on CeO₂(111). $|\mu|_{av}$ Ce³⁺ and $|\mu_T|$ Pt₈ correspond to the average magnitude on the Ce³⁺ cations and the total magnitude of the Pt₈ cluster, respectively and q(Pt₈) is the Bader charge of the Pt₈ cluster.

O _{ads}	#Ce ³⁺	$ \mu _{av} \operatorname{Ce}^{3+}(\mu_B)$	$\left \mu_{T}\right Pt_{8}\left(\mu_{B}\right)$	$q(Pt_8)$	$E_{ads} \left(eV \right)$
Pt ₃	2	0.85	1.03	1.55	-1.16
Pt ₂	2	0.93	1.38	1.43	-1.30

Figure S1: Top (left panels) and side (right panels) views of the most stable computed $Pt_8/CeO_{2-x}(111)$ structures with an oxygen atom removed from different positions (I-IV) of the slab to the gas-phase. Red spheres – O, purple – Ce, blue – Pt, yellow and light blue – spin density.

Figure S2: Top (left panels) and side (right panels) views of the most stable computed O- $Pt_8/CeO_{2-x}(111)$ structures with an oxygen atom spilled-over from two different positions (II and IV) of the slab and adsorbed on different stable sites (Pt_2 and Pt_3) of the Pt_8 particle. Red spheres – O, purple – Ce, blue – Pt, yellow and light blue – spin density.

