The photoinduced isomerisation and its implication in the photo-dynamical

processes in two simple Schiff bases isolated in solid argon.

Joanna Grzegorzek, Aleksander Filarowski and Zofia Mielke*

Faculty of Chemistry, University of Wroclaw, Joliot Curie 14, 50-383 Wroclaw, Poland Email : zm@wchuwr.pl Fax : +48 71 3282348 Phone : +48 71 3757475

Supporting Material

Figures:

- Figure S1. The DFT/B3LYP/3-311G++(2d,2p) optimized structures of 2-(1-methylimino)methyl)-phenol (X=H) and 2-(1-(methylimino)methyl)-6-chlorphenol (X=Cl). The relative energies (ΔE_{ZPE} , kJ/mol) are given in the parantheses.
- Figure S2. The comparison of the experimental spectrum and theoretical spectra of the I_E , II_E , III_E and IV_E SMA conformers in the CH stretching region.
- Figure S3 The schematic energy diagram for the possible mechanisms of conversion of I_E conformer into II_E one, in the ground electronic SMA state.
- Figure S4. The DFT/B3LYP/3-311G++(2d,2p) optimized structures of 2-(1-(methylimino)methyl)-phenol complexes with water: SMA-H₂O; SMA-(H₂O)₂.
- Figure S5. The infrared spectra of SMAC/Ar matrix in the 1710-1240 region: (a) the spectrum recorded after matrix deposition and (b,c) after matrix exposure to λ >320 nm radiation for 25 and 190 min, respectively.

Tables:

- Table S1. The comparison of the experimental and DFT/B3LYP/6-311++G(2d,2p) calculated anharmonic and harmonic frequencies (cm⁻¹) for I_E conformer of the 2-(1-(methylimino)methyl)phenol.
- Table S2. The comparison of the experimental and DFT/B3LYP/6-311++G(2d,2p) calculated anharmonic and harmonic frequencies (cm⁻¹) for II_E conformer of the 2-(1-(methylimino)methyl)-phenol.
- Table S3. The comparison of the DFT/B3LYP/6-311++G(2d,2p) calculated harmonic frequencies (cm⁻¹) and intensities (kmmol⁻¹) for all optimized enol conformers of the 2-(1-(methylimino)methyl)-phenol.
- Table S4. The selected, DFT/B3LYP/6-311++G(2d,2p) calculated geometrical parameters of the I_E and II_E conformers of 2-(1-(methylimino)methyl)-phenol (r in Å, angle values in degrees).
- Table S5. The experimental (E1) and calculated frequencies of I_E conformer and the identified frequencies of I_E –H₂O (E1W1) and I_E –(H₂O)_n (E1W2) complexes. The observed and calculated frequency shifts ($\Delta v = v_{compl} v_{mon}$) for the 1:1 complexes are also presented.
- Table S6. The comparison of the experimental and DFT/B3LYP/6-311++G(2d,2p) calculated anharmonic and harmonic frequencies (cm⁻¹) for I_{CE} conformer of the 2-(1-(methylimino)methyl)-6-chlorophenol.

- Table S7. The comparison of the experimental and DFT/B3LYP/6-311++G(2d,2p) calculated anharmonic and harmonic frequencies (cm⁻¹) for II_{CE} conformer of the 2-(1-(methylimino)methyl)-6-chlorphenol.
- Table S9. The comparison of the DFT/B3LYP/6-311++G(2d,2p) calculated harmonic frequencies (cm^{-1}) and intensities $(kmmol^{-1})$ for all optimized enol conformers of 2-(1-(methylimino)methyl)-6-chlorophenol.
- Table S10. The comparison of the DFT/B3LYP/6-311++G(2d,2p) calculated harmonic frequencies (cm⁻¹) and intensities (kmmol⁻¹) for all optimized keto conformers of 2-(1-(methylimino)methyl)-6-chlorophenol.
- Table S11. The selected, DFT/B3LYP/6-311++G(2d,2p) calculated geometrical parameters of the I_{CE}, II_{CE} and II_{CK} conformers of 2-(1-(methylimino)methyl)-6-chlorophenol (r in Å, angle values in degrees).

Figure S1. The DFT/B3LYP/3-311G++(2d,2p) optimized structures of 2-(1-(methylimino)methyl)phenol (X = H) and 2-(1-(methylimino)methyl)-6-chlorphenol (X = Cl).

The relative energies (ΔE_{ZPE} , kJ/mol) are given in the parantheses.

* M.Z.Zgierski; A.Grabowska J. Chem. Phys. 2000, 113, 7845-7852

Figure S3 The schematic energy diagram for the possible mechanisms of conversion of I_E conformer into II_E one, in the ground electronic SMA state (energy in kJ/mol).^a

 a The DFT/B3LYP/6-311++G(2d,2p) calculations were done to optimize the structures and to calculate the frequencies. For all energies the zero point energy values have been considered. All the stationary points were unambigously characterized as minima or transition states by their vibrational spectra. To confirm that a given transition state links proper reactant and product, IRC calculations were performed. These examine the intrinsic reaction path leading down from a transition structure on a potential energy surface.

Two possible mechanisms of conversion of I_E conformer into II_E one were considered:

1. The rotation of the OH group around C-O bond is followed by rotation of the C(H)NCH₃ group around C-C bond.

2. The rotation of the C(H)NCH₃ group around C-C bond is followed by the rotation of the OH group around C-O bond.

We have not considered the simultaneous rotation of the OH and C(H)NCH₃ groups

Figure S4. The DFT/B3LYP/3-311G++(2d,2p) optimized structures of 2-(1-(methylimino)methyl)phenol complexes with water: SMA–H₂O; SMA–(H₂O)₂. The interaction energies (ΔE_{ZPE} , kJmol⁻¹) are given in the parantheses.

	2								
IR ¹	IR^2	Experimental		Experimental		C	Calculat	ed	
liquid	gas	A		N					
pnase	pnase	Ar matrix	тb	N ₂ matrix	т		т		PED %
v _{obs.} cm ⁻¹	ν _{obs.} cm⁻¹	V _{obs} " cm ⁻¹	ľ	V _{obs} cm ⁻¹	I	ν _{harm.} cm ⁻¹	I	ν _{anh.} cm⁻¹	
	3179					3202	14	3063	97vCH _{ring}
3057.0	3076					3196	19	3081	95vCH _{ring}
3009.1	3053					3175	26	3042	98vCH _{ring}
	3013					3162	4	3013	96vCH _{ring}
~2750	2990	3250-3050	s	3200-3000		3189	408	2784	96vOH
2951.1	2903	2883-2850	VW	2862-2855	vw	3083	14	2931	100vCH ₃
2890.7	2867					3072	24	2926	100vCH ₃
2782.3	2741					2995	78	2890	96vCH ₃
2857.9	2790	2751.6	vw	2762.2	vw	3007	88	2856	96vCH
		1674.5, <u>1673.1</u>		1673.8					
1637.5	1648	<u>1650.1</u> , 1648.7	s	1652.7, 1651.5, 1648.9	s	1691	188	1653	60vC=N+11δ(NCH+CCH)+7δCCC+7vCC
1613.3		1627.3, 1625.9	m	1625.1, 1623.3	m	1663	103	1614	$44\nu CC_{ring} + 20\delta COH + 7\delta CCO + 7\delta CCC_{ring}$
1584.3	1589	1586.6	m	1584.7	m	1620	52	1577	$45\nu CC_{ring} + 20\delta COH + 7\delta CCH_{ring} + 7\delta CCC_{ring}$
1497.7	1494	1499.0-1488.2	w	1496.2-1485.3	W	1540	48	1499	$27\delta COH+23\delta CCH_{ring}+21\nu CC_{ring}$
1464.9	1457					1508	6	1464	57δCH ₃
1452.9	1465	1465.6	vs	1467.9, 1465.8	s	1496	60	1455	$20\delta CH_{3}+24\nu CC_{ring}+13\delta CCH_{ring}+11\delta CCC_{ring.}+7\nu CO$
	1405					1482	6	1475	98 δ СН ₃
1418.9	1412	1386.5	m	1393.2, 1391.3, 1389.6	W	1462	42	1423	$41\delta COH+26\delta CCH_{ring}+15vCC_{ring}$
1401.8	1405			1387.6	vw	1446	21	1428	86 ð СН ₃
1368.5	1373	1338.7	vw	1346.4	w	1400	15	1384	58δ(NCH+CCH)+7νCC+7νC=N
1316.2	1318	1325.0	w	1325.7,1324.2	w	1347	4	1317	$67\nu CC_{ring} + 7\delta CCH_{ring} + 7\delta (CCN + NCH + CCH) + 7\delta CCC$
1280.5	1283	~1287	vs	1289.6, 1283.8, 1280.4	vs	1316	95	1289	$37\nu CO+13\delta CCC_{ring}+9\delta CCH_{ring}$

Table S1. The comparison of the experimental and DFT/B3LYP/6-311++G(2d,2p) calculated anharmonic and harmonic frequencies (cm⁻¹) for I_E conformer of the 2-(1-(methylimino)methyl)phenol. The relative experimental intensities and the calculated intensities (kmmol⁻¹) corresponding to harmonic frequencies are also given. The potential energy distribution of the normal modes is presented.

Tabl	e S1,	cd
------	-------	----

1212.6	1242	1231.8, 1229.1	W	1235.0-1225.8	m	1268	2	1246	$37\delta CCH_{ring.} + 14\nu CC_{ring} + 9\delta CCO + 7\nu CC + 7\nu CO$
1198.1?	1210	1206.2, 1203.3,	m	1206.0, 1190.0	s	1233	36	1207	$51\nu CC_{ring} + 15\delta CCH_{ring} + 9\delta (NCH + CCH)$
1151.8	1147	1148.9	m	1149.8, 1151.4	m	1179	20	1164	$72\delta CCH_{ring} + 9\nu CC_{ring}$
						1164	16	1141	60δCH ₃ +11νC-N
						1140	0	1116	896CH ₃
1139.8		1116.3	m	1115.8	vw	1134	3	1117	$21\delta CCH_{ring} + 15\delta CH_3 + 13\nu CO + 10\delta CCC_{ring} + 8\delta CCC + 7\delta CCO$
1036.9	1036	1029.3	vw	1031.4, 1029.1	w	1056	9	1038	$34\nu CC_{ring} + 17\delta CCH_{ring} + 10\nu C-N$
1006.5	1008					1024	25	999	53vC-N+14δ(CCN+NCH+CCH)+7δCH ₃
965.5	966					998	6	979	$47\gamma CCH+27\gamma CCH_{ring}+9\tau CCC_{ring}$
						994	3	987	$69\gamma CCH_{ring} + 15\gamma CCH + 7\tau CCC_{ring}$
						955	0	943	817CCH _{ring} +87CCH
895.5	895	885.3	s	885.5	vs	909	14	905	$58\delta CCC_{ring}$ +17 δCCN +7 νCO +7 νCC
844.8	797	744.0	m	749.8, 747.2	m	884	31	855	63γCOH+22γCCH _{ring.}
756.5	753	757.1, 758.8	m	766.1, 763.8	vs	872	35	855	$42\gamma CCH_{ring} + 13\gamma CCO + 13\tau CCC_{ring} + 12\gamma COH$
782.9	782	768.2	W	770.3	m	795	8	790	$46\nu CC_{ring} + 12\nu CO + 10\delta(CCN + NCH + CCH) + 7\delta CCC_{ring}$
736.2		718.2	s	723.5	m	767	47	754	$38\gamma CCH_{ring} + 25\tau CCC_{ring} + 22\gamma CCO$
		721.4	m	725.5	w	755	27	747	$43\tau CCC_{ring} + 19\gamma CCH_{ring} + 18\gamma CCN + 10\gamma CCO$
647.4	646			667.4	w	663	11	656	52δCCC _{ring} +22δ(CCN+NCH+CCH)

[1] M. Matusiak, W. Wrzeszcz, T. Dziembowska, J.P. Hawranek, J. Mol. Struct., 2004, 704, 223-227.

[2] A. Filarowski, A. Koll, A. Karpfen and P. Wolschann, Chem. Phys., 2004, 297, 323-332

^a in the case of the bands that show multiple components the frequency of the most intense component is underlined. ^b vs – very strong, s – strong, m – medium, w – weak, vw – very weak, b – broad ^c only the components of PED that contribute more than 7% are taken into account

Table S2. The comparison of the experimental and DFT/B3LYP/6-311++G(2d,2p) calculated anharmonic and harmonic frequencies (cm^{-1}) for II_E conformer of the 2-(1-(methylimino)methyl)phenol. The relative experimental intensities and the calculated intensities (kmmol⁻¹) corresponding to harmonic frequencies are also given. The potential energy distribution of the normal modes is presented.

Experimental Ar matrix				Ca	lculated
v _{obs.} ^a cm ⁻¹	Ip	v _{harm.} cm ⁻¹	Ι	v _{anh.} cm ⁻¹	PED ^c %
3632.1	VS	3838	70	3669	100vOH
~ 2966	vw	3206 3193 3178	7 10 7	3070 3054 3063	96vCH _{ring} 97vCH _{ring}
		3155	13	3012	99vCH
~ 2883	vw	3073 3060 2975	18 30 95	2922 2941 2873	100vCH ₃ 100vCH ₃
2770.2	vw	3036	40	2878	99vCH
1703.4, <u>1700.6</u>	vs	1708	89	1671	57νC=N+25δ(NCH+CCH)
1615.3	s	1645	43	1605	$55\nu CC_{ring} + 8\delta CCH_{ring} + 8\delta CCC_{ring}$
		1625	21	1587	62νCC _{ring} 9δCCH _{ring} +8δCCC _{ring}
1495.2	w	1532	11	1497	47δCCH _{ring} +29νCC _{ring}
1464.2	vs	1503	16	1460	78δCH ₃ +7δ(NCH+CCH)
1464.2	vs	1490	72	1459	$39\delta CCH_{ring} + 27\nu CC_{ring}$
		1480	5	1501	97 δ СН ₃
		1442	15	1423	856CH ₃
1401.1	vw	1410	12	1392	90δ(NCH+CCH)
1323.5	m	1358	52	1330	$48\nu CC_{ring}$ + $24\delta CCH_{ring}$ + $20\delta COH$
1308.8, <u>1302.0</u>	vs	1329	73	1301	$31\nu CC_{ring} + 30\delta CCH_{ring} + 11\delta CCC$
<u>1251.0</u> , 1244.2	w	1265	74	1239	$40\nu CO+25\nu CC_{ring}+8\nu CC$
1210.9	W	1240	26	1220	38δ(NCH+CCH)+17vCC+16vCC _{ring} +12δCOH+8δCCC _{ring}
1165.6	w	1191	46	1175	$30\delta COH+40\delta CCC_{ring}+15\nu CC_{ring}$
1158.3, 1155.4	vw	1183	14	1171	$77\delta CCH_{ring}$ + $16\nu CC_{ring}$
		1154	7	1126	69δCH ₃ +9νC-N+7δCCH
1092.5	vw	1114	38	1099	$25\nu CC_{ring} + 22\delta CCC_{ring} + 9\delta COH + 7\delta CCH_{ring}$
		1019	12	994	68ν C-N+11 δ (CCN+NCH+CCH)+7 δ CCC _{ring}
845.7	m	876	19	865	39δCCH _{ring} +14vCC+ 12δ(CCN+NCH+CCH)+9vCC _{ring}
804.9	w	827	14	819	$30vCC_{ring} + 21vCO + 21\delta CCH_{ring} + 13\delta(CCN+NCH+CCH)$
758.5, 757.2	m	766	62	769	$29\gamma CCH_{ring} + 28\gamma CCO + 26\tau CCC_{ring}$
760.1	m	743	8	773	$44\tau CCC_{ring} + 34\gamma CCN + 14\gamma CCO$
632.1	vw	643	6	637	$67\delta CCC_{ring} + 9\delta (CCN + NCH + CCH) + 9\nu CC_{ring}$

^a in the case of the bands that show multiple components the frequency of the most intense component is underlined.

 b^{-} vs – very strong, s – strong, m – medium, w – weak, vw – very weak, b – broad c^{-} only the components of PED that contribute more than 7% are taken into account

Table S3. The comparison of the DFT/B3LYP/6-311++G(2d,2p) calculated harmonic frequencies (cm⁻¹) and intensities (kmmol⁻¹) for all optimized enol conformers of the 2-(1-(methylimino)methyl)phenol. The relative energies (ΔE_{ZPE} , kJmol⁻¹) are also given.

2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	20 - O			هي د			à.	
ిళి ^ల ు	. .		•••		د. و د کی د	- చిల్లా		းမ်ိဳးစုသ
್ರಾತ್ಮಿತ) ್ವಾಡಿ,		ني فروند مورف	್ರ ಲೈ 🔍	₩ ₽		ು _⊜ .ಿ. _⊜ .⊜್ರ	್ಯ ಹಿನ್ನ 🔍
, Ū,	<u>ر في</u>	J.,	ر فر _چ فر	ر فر فر	ن≜ ني≓في	ر فر ی فر	ىڭ. _چ .خ.	، ظري ظري
<u> </u>	<u>)</u>			5			<u> </u>	<u> </u>
$I_{\rm E}$ (0 kJ/mc	ol) $\Pi_{\rm E} (\Delta {\rm E})$	=37.64)	$III_{E} (\Delta E=42.88)$	$IV_E (\Delta E=52.61)$	$V_{\rm E}$ (ΔE =64.17)	$VI_{\rm E}$ ($\Delta E=65.78$)	VII_E ($\Delta E=66.78$)	VIII _E ($\Delta E=68.48$)
$v_{harm.}$ I	$v_{harm.}$	I	V _{harm.}	$v_{harm.}$ I	V _{harm.}	v _{harm.} I	$v_{harm.}$	$v_{harm.}$ I
3202 14	3838	70	3843 54	3819 54	3802 71	3825 72	3837 73	3836 67
3196 19	3206	7	3207 7	3199 14	3202 8	3204 7	3204 8	3199 13
3189 408	3193	10	3201 6	3182 12	3195 12	3197 11	3192 11	3183 10
3175 26	3178	7	3190 10	3168 3	3179 6	3186 6	3180 3	3168 2
3162 4	3155	13	3175 2	3152 13	3168 3	3176 1	3156 12	3154 11
3083 14	3073	18	3078 15	3075 17	3089 18	3089 23	3093 15	3089 15
3072 24	3060	30	3062 29	3059 31	3078 14	3074 17	3084 28	3080 29
3007 88	3036	40	2968 111	2963 133	3067 22	3032 18	3066 22	3063 25
2995 78	2975	95	2923 81	2946 43	3018 31	3014 42	3009 38	3014 43
1691 188	1708	89	1709 109	1714 104	1693 102	1698 83	1703 90	1711 89
1663 103	1645	43	1653 56	1642 53	1650 23	1651 38	1642 46	1642 33
1620 52	1625	21	1616 38	1620 24	1614 26	1614 33	1623 16	1623 15
1540 48	1532	11	1519 33	1537 14	1520 49	1516 54	1532 15	1535 15
1508 6	1503	16	1505 20	1504 10	1506 5	1505 6	1510 4	1507 5
1496 60	1490	72	1497 65	1483 54	1496 17	1495 38	1490 20	1487 27
1482 6	1480	5	1478 5	1479 4	1482 14	1487 9	1486 43	1476 31
1462 42	1442	15	1446 17	1441 17	1441 3	1436 8	1437 9	1435 4
1446 21	1410	12	1437 10	1418 12	1408 15	1423 8	1429 7	1415 16
1400 15	1358	52	1355 20	1365 51	1368 20	1363 22	1359 58	1360 45
1347 4	1329	73	1332 49	1329 57	1319 15	1322 42	1323 44	1317 34
1316 95	1265	74	1267 28	1295 31	1264 29	1269 27	1272 57	1273 35
1268 2	1240	26	1238 82	1240 27	1238 107	1223 132	1216 44	1224 41
1233 36	1191	46	1189 74	1196 30	1192 25	1193 33	1194 37	1190 21
1179 20	1183	14	1177 59	1186 7	1176 33	1177 39	1184 7	1183 8
1164 16	1154	7	1154 8	1154 12	1160 2	1161 0	1160 6	1163 4

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2011

Table S3 cd														
1140	0	1140	0	1136 0	0 1137	0	1138	3	1136	4	1134	7	1133 3	
1134	3	1114	38	1111 1	11 1125	57	1120	1	1111	1	1111	49	1119 58	;
1056	9	1061	3	1056 1	12 1071	4	1055	11	1056	11	1064	2	1063 3	
1024	25	1019	12	1020 1	15 1014	18	997	0	997	0	993	1	992 0	
998	6	1007	2	1005 0	0 992	3	968	3	972	5	969	11	966 14	ł
994	3	987	4	983 4	4 982	3	955	15	960	10	958	10	960 7	
955	0	964	0	952 2	2 949	0	928	8	935	9	930	7	922 6	
909	14	876	19	880 2	2 905	20	891	14	879	6	866	8	885 31	1
884	31	861	1	875 1	11 856	2	867	6	853	12	851	18	853 4	
872	35	827	14	824 1	10 787	7	804	9	836	9	833	8	800 9	
795	8	766	62	773 5	59 762	59	768	55	767	57	765	54	764 59)
767	47	743	8	747 0	0 744	15	735	7	736	5	735	15	731 10)
755	27	643	6	641 6	6 663	9	677	12	674	15	673	12	679 12	2
663	11	555	4	554 8	8 574	3	578	2	575	2	575	1	579 1	

Table S4. The selected, DFT/B3LYP/6-311++G(2d,2p) calculated geometrical parameters of the I_E and II_E conformers of 2-(1-(methylimino)methyl)phenol (r in Å, angle values in degrees).

	$\mathbf{I_E}$	$\mathbf{II}_{\mathbf{E}}$
r C ₁ -O ₁₄	1.342	1.370
r C ₂ -C ₁₀	1.454	1.472
r C ₁₀ =N ₁₂	1.278	1.269
r C ₁₀ -H ₁₁	1.097	1.094
r N ₁₂ -C ₁₆	1.449	1.448
r O ₁₄ -H ₁₅	0.993	0.962
$R N_{12} \cdots H_{15}$	1.734	
θ H ₁₉ -C ₁₆ -N ₁₂	112.8	113.6
$\theta C_{16} N_{12} = C_{10}$	119.4	118.1
$\theta N_{12} = C_{10} - H_{11}$	120.7	121.5
$\theta H_{11}-C_{10}-C_2$	116.4	116.2
θC_1 -O ₁₄ -H ₁₅	107.3	109.5
$\theta N_{12} \cdots H_{15} - O_{14}$	147.9	
$\phi H_{19}-C_{16}-N_{12}=C_{10}$	0.0	0.0
$\phi C_{16}-N_{12}=C_{10}-H_{11}$	0.0	0.0
ϕH_{11} -C ₁₀ -C ₂ -C ₁	-180.0	0.0
ϕC_6 - C_1 - O_{14} - H_{15}	-180.0	0.0

Table S5. The experimental (E1) and calculated frequencies of I_E conformer and the identified frequencies of I_E –H₂O (E1W1) and I_E –(H₂O)_n (E1W2) complexes. The observed and calculated frequency shifts ($\Delta v = v_{compl} - v_{mon}$) for the 1:1 complexes are also presented.

SMA		SMA-H ₂	0			SMA-(H ₂ O) _n
E1	I _E	E1	W1	I _{EW1}	Assignment	E1W2
$v_{obs.}$	V _{harm.}	V _{obs} .	$\Delta v_{obs.}$	$\Delta v_{harm.}$		V _{obs} .
1650.1	1691	1655.7	+5.6	+4	$\nu C=N+\delta CCH$	1667.3
1586.6	1620				$\nu CC_{ring} + \delta COH$	1583.8
1499-1488	1540	1493.9	0.0	+8	$\delta COH+\delta CCH_{ring}+\nu CC_{ring}$	1491.8
1465.6	1496	1467.7	+2.1	0	$\delta CH_3 + \nu CC_{ring} + \delta CCH_{ring}$	
1386.5	1462	1390.1	+3.6	+7	δCCH+vCC	1397.3
1338.7	1400	1341.5	+2.8	+2	δ(NCH+CCH)	
1325.0	1347	1327.9	+2.9	-2	νCC_{ring}	
~1287	1316				$\nu CO + \delta CCC_{ring}$	1289.3, 1285.5
1231.8	1268	1234.6	+2.8	0	$\delta CCH_{ring} + \nu CC_{ring}$	1230.6
1203.3	1233	1206.3	+3.0	+5	$\nu CC_{ring} + \delta CCH_{ring}$	
1148.9	1179	1151.2,	+2.3,	+3	$\delta CCH_{ring} + \nu CC_{ring}$	1150.3,
1029.3	1056	1032.4	+0.8 $+3.1$	+2	vCC _{ring} +δCCH _{ring} +vC-N	1155.0
885.3	909	886.7	+1.4	0	$\delta CCC_{ring} + \delta CCN$	887.9
768.2	795	773.3	+5.1	+1	$vCC_{ring} + vCO$	
718.2	767	720.9	+2.7	+2	$\gamma CCH_{ring} + \tau CCC_{ring} + \gamma CCO$	715.2
744.0	884	759.0	+15.0	+19	$\gamma \text{COH} + \gamma \text{CCH}_{\text{ring}}$	738.6
667.9	663	667.9	0.0	0	$\delta CCC_{ring} + \delta (CCN + NCH + CCH)$	
H ₂ O						
V _{obs.}	V _{harm.}	V _{obs.}	$\Delta v_{obs.}$	$\Delta v_{harm.}$	Assignment	
3733.0	3823	3622.7	-110.3	-109	$v_{asym} H_2 O$	3715.3
3638.0	3925	3586.0	-52.0	-32	$v_{sym.}$ H ₂ O	3559.8

Table S6. The comparison of the experimental and DFT/B3LYP/6-311++G(2d,2p) calculated anharmonic and harmonic frequencies (cm⁻¹) for I_{CE} conformer of the 2-(1-(methylimino)methyl)-6-chlorphenol. The relative experimental intensities and the calculated intensities (kmmol⁻¹) corresponding to harmonic frequencies are also given. The potential energy distribution of the normal modes is presented.

Experimenta	ıl				Calculated
Ar matrix	T 9		T		
V _{obs.}	l"	$v_{harm.}$		$v_{anh.}$	PED %
		3209	5	3040 2051	9/VCH _{ring}
		2170	2	2049	99VCH _{ring}
2800 2600	1	2120	402	3048	99WCH _{ring}
2800-2600	b	3129	492	2690	96VOH _{HB}
2908.4 2921.4		3086	21	2943 2939	100vCH ₃
2898.7		2998	100	2892	97vCH ₃
2866.3		3015	87	2854	98vCH
1646.9	m	1692	177	1652	64vC=N+11δ(NCH+CCH)+7δCCC+7vCC
1600.1	vw	1655	66	1605	$40\nu CC_{ring} + 19\delta COH + 8\delta CCO + 7\delta CCH_{ring} + 7\delta CCC_{ring}$
1552.8	vw	1610	6	1545	$49\nu CC_{ring} + 14\delta COH + 10\delta CCH_{ring} + 7\delta CCC_{ring}$
1492.7	vw	1535	29	1496	$28\delta COH+25\nu CC_{ring}+20\delta CCH_{ring}$
1440.5	vw	1505	6	1431	72δСН ₃ +9δСОН
~1484	vw	1482	6	1470	97δCH ₃
1452.9	vs	1476	152	1446	$21\nu CO + 24\nu CC_{ring} + 16\delta CCH_{ring} + 9\delta CH_3 + 7\delta CCC$
1405.2	w	1461	18	1419	$39\delta COH+26\delta CCH_{ring}+10\nu CC_{ring}+7\nu CC$
1416.6	w	1445	23	1424	86 ð CH ₃
1363.1, 1369.2	vw	1400	34	1378	$56\delta(NCH+CCH)+9\nu CC+7\delta(CCN+NCH+CCH)+7\nu C=N$
1308.9, 1301.3	vw	1328	24	1300	$72\nu CC_{ring} + 7\delta(CCN+NCH+CCH)$
1284.8	w	1314	31	1290	$43\nu CO + 14\nu CC_{ring} + 13\delta CCH_{ring} + 11\delta CCC_{ring}$
1233.4	vw	1253	22	1231	21vCC _{ring} +20vCC+17\deltaCCH _{ring} +96(NCH+CCH)
1190.0	m	1213	49	1191	$38\delta CCH_{ring} + 11\delta COH + 10\nu CC_{ring} + 8\delta CCO + 7\delta CCC_{ring}$
1150.3, 1152.5	w	1172	59	1148	$38\delta CH_3+24\delta CCH_{ring}+13\nu CC_{ring}+7\nu C-N$
1136.2	vw	1154	15	1127	$47\delta CH_{3}+8\delta CCH_{ring}+8\delta CCC_{ring}+7\nu CCl+7\nu C-N$
		1141	0	1114	666CH ₃ +10γNCH
1078.4	vw	1101	14	1081	$54\nu CC_{ring} + 27\delta CCH_{ring}$
1013.3	m	1027	28	999	55ν C-N+14 δ (CCN+NCH+CCH)+7 δ CH ₃
965.1	vw	998	9	972	$49\gamma NCH + 18\gamma CCH_{ring} + 9\delta CH_3 + 8\gamma CCN + 8\tau CCC_{ring}$
		982	0	953	68γCCH _{ring} +12γNCH+9τCCC _{ring}
940.1	vw	947	10	934	24δCCC _{ring} +15δ(CCN+NCH+CCH)+10vCC+
		928	0	906	$82\gamma CCH_{ring} + 7\tau CCC_{ring}$
842.6	vw	902	62	847	96үСОН
836.9	w	848	11	837	$21\delta CCC_{ring} + 22\nu CC_{ring} + 17\nu CO + 9\nu CCl$
		814	6	738	$42\tau CCC_{ring} + 18\gamma CCO + 14\delta CCC + 8\gamma CCCl + 7\gamma CCH_{ring}$
739.5	m	760	49	735	$56\gamma CCH_{ring} + 17\tau CCC_{ring} + 17\gamma CCO$
692.1, 681.5	vw	694	37	690	$52\delta CCC_{ring} + 27\delta (CCN + NCH + CCH) + 12\nu CCl + 7\nu CC_{ring}$
		612	6	607	$32\delta CCC_{ring} + 14\delta CCC + 11\nu CC_{ring} + 9\nu CCl$

^a vs – very strong, s – strong, m – medium, w – weak, vw – very weak, b – broad ^b only the components of PED that contribute more than 7% are taken into account

Table S7. The comparison of the experimental and DFT/B3LYP/6-311++G(2d,2p) calculated anharmonic and harmonic frequencies (cm⁻¹) for II_{CE} conformer of the 2-(1-(methylimino)methyl)-6chlorphenol. The relative experimental intensities and the calculated intensities (kmmol⁻¹) corresponding to harmonic frequencies are also given. The potential energy distribution of the normal modes is presented.

Experin Ar ma	nental atrix				Calculated
V _{obs.}	I ^a	$\nu_{\text{harm.}}$	Ι	$\nu_{\text{anh.}}$	PED ^b %
3552.6	VS	3750	119	3540	100vOH
		3213	5	3069	99vCH _{ring}
		3207	0	3053	99vCH _{ring}
		3189	4	3034	99vCH _{ring}
2967.6		3076	16	2936	100vCH ₃
2927.8		3063	27	2930	100vCH ₃
2865.5		2979	90	2867	99vCH ₃
2893.8		3043	35	2876	99vCH
1661.2	vs	1708	78	1670	55vC=N+28δ(NCH+CCH)
1581.5	m	1636	34	1598	$60vCC_{ring} + 8\delta CCH_{ring} + 8\delta CCC_{ring}$
1561.3	vw	1609	8	1554	$64\nu CC_{ring} + 9\delta CCH_{ring} + 8\delta CCC_{ring}$
		1507	2	1475	$42\delta CCH_{ring} + 28\nu CC_{ring} + 7\nu CC$
		1503	14	1450	83δCH ₃ +7δ(NCH+CCH)
		1480	5	1487	90δCH ₃
1452.9		1478	143	1443	$34\nu CC_{ring} + 24\delta CCH_{ring} + 16\nu CO + 7\delta CCC$
1423.8	vw	1442	14	1426	83&CH3
1396.9	vw	1410	16	1387	93δ(NCH+CCH)
1332.8	m	1369	52	1337	$40\nu CC_{ring} + 30\delta COH + 19\delta CCH_{ring}$
1276.9, 12	273.9 m	1294	79	1267	43νCC _{ring} +16δCCH _{ring} +10νCC+7δ(CCN+NCH+CCH)
1251.0	m	1273	64	1248	$39\nu CO+18\delta CCH_{ring}+14\nu CC_{ring}+7\delta CCC_{ring}$
1209.5	vw	1244	42	1220	$33\delta(NCH+CCH)+20\nu CC_{ring}+16\delta COH+14\nu CC+7\delta CCC_{ring}$
1169.4	vw	1191	13	1176	66δCCH _{ring} +9δCOH+7νCC _{ring}
1136.6	w	1156	14	1131	61δCH ₃ +19δ(NCH+CCH)+7νC-N
1129.4	w	1146	35	1127	$24\nu CC_{ring} + 21\delta CCC_{ring} + 12\nu CCl + 12\delta CCH_{ring}$
		1140	0	1114	72δCH ₃ +21γNCH
~1071	w	1094	10	1071	$49\nu CC_{ring} + 30\delta CCH_{ring} + 7\delta CCC_{ring}$
		1023	11	998	69vC-N+10δ(CCN+NCH+CCH)
		1007	3	982	$44\gamma CCH_{ring} + 21\tau CCC_{ring} + 14\gamma CCN + 14\gamma NCH$
		986	3	962	$56\gamma NCH+12\gamma CCN+8\gamma CCH_{ring}+7\tau CCC_{ring}$
		937	0	915	66γCCH _{ring} +11τCCC _{ring}
893.3	w	895	29	881	20δCCC _{ring} +18vCC+19δ(CCN+NCH+CCH)+11vCC _{ring} +10vCCl
		844	8	828	$43\delta CCC_{ring} + 23\nu CO + 17\nu CC_{ring}$
		803	17	789	$38\tau CCC_{ring} + 24\gamma CCN + 15\gamma CCO + 11\gamma CCH_{ring}$
752.9	m	753	34	754	36τCCC _{ring} +26γCCO+19γCCN+7γCCH _{ring}
~715	v	721	48	711	27δCCH _{ring} +25vCCl+15δ(CCN+NCH+CCH)+24δCCC

^{a -} vs – very strong, s – strong, m – medium, w – weak, vw – very weak, b – broad ^{b -} only the components of PED that contribute more than 7% are taken into account.

Table S8. The comparison of the experimental and DFT/B3LYP/6-311++G(2d,2p) calculated anharmonic and harmonic frequencies (cm⁻¹) for II_{CK} conformer of the 2-(1-(methylimino)methyl)-6-chlorphenol. The relative experimental intensities and the calculated intensities (kmmol⁻¹) corresponding to harmonic frequencies are also given. The potential energy distribution of the normal modes is presented.

Experimen Ar matrix	ital				Calculated
$\nu_{obs.}$	I ^a	$\nu_{\text{harm.}}$	Ι	$\nu_{\text{anh.}}$	PED ^b %
3439.7	VW	3608	45	3449	99vNH
		3202	10	3069	97vCH _{ring}
		3186	8	3037	98vCH _{ring}
		3142	13	3012	95vCH _{ring}
		3141 3089	5	2998 2942	9/VCH ₃ 100vCH ₂
		3039	68	2876	99vCH ₃
		3171	1	3014	98vCH
1656.2	VS	1694	567	1655	$31\nu C=O+17\nu C=C+13\nu CN+7\nu C=C_{ring}+8\delta(NCH+CNH)+7\delta(NCH+CCH)$
		1646	16	1607	$51vC=C_{ring}+18vCN+17\delta CCH_{ring}$
1581.6		1618	508	1581	$44\nu C=O+11\nu CN+10\delta(NCH+CNH)+7\nu C=C_{ring}$
1510.8	m	1539	67	1502	$46vC=C_{ring}+20vC-C+11\delta CCH_{ring}+7\delta CCC_{ring}$
		1521	43	1478	79 δ СН ₃
1465.8	m	1498	33	1469	$39\delta CCH_{ring} + 20\nu C - C + 7\delta CH_3 + 7\nu C = C$
		1491	8	1463	958CH3
		1480	16	1460	78δCH ₃ +13δ(NCH+CNH)
		1445	107	1410	$31\delta CH_3 + 18\delta (NCH + CNH) + 15\nu C = C + 13\delta (C = CH + NCH) + 7\nu C - C_{ring}$
		1381	7	1353	$27\delta CCH_{ring} + 16\delta (C=CH+NCH) + 8\delta CCC + 7\delta (NCH+CNH) + 7\nu C - C_{ring} + 7\nu CN$
1329.4		1351	274	1329	30vCN+22δ(C=CH+NCH)+17δ(NCH+CNH)+7δCH ₃
1308.9, 13	01.3	1333	121	1308	$38\delta CCH_{ring} + 18\nu C - C_{ring} + 10\nu C = C + 10\nu C = C_{ring}$
		1268	19	1240	33ν C-C _{ring} + 12δ (C=CH+NCH)+ 11δ CCH _{ring} + 8ν C=C _{ring}
		1190	0	1177	$58\delta CCH_{ring} + 9\nu C - C + 7\delta CH_3$
		1154	29	1129	338CH ₃ +16vNC(H ₃)+10vC-C
		1148	0	1120	93 δ СН ₃
1115.5	S	1131	100	1108	$16\delta CH_3 + 13\delta CCC_{ring+} 17\nu C - C_{ring} + 8\nu CCl + 7\delta CCO + 7\delta CCC$
		1064	23	1046	$60vC-C_{ring}+17\delta CCH_{ring}+7vC=C_{ring}$
		1022	1	1001	39vNC(H ₃)+18δCH ₃ +9δCCO
		1021	12	982	92γCNH
		964	1	951	$85\gamma CCH_{ring} + 11\tau CCC_{ring}$
		927	4	915	$90\gamma CCH_{ring} + 7\tau CCC_{ring}$
893.4	m	904	68	890	$20\delta CCC_{ring} + 23\delta (CCN + NCH + CCH) + 10\nu C - C_{ring} + 9\nu CCl + 7\nu C = C(N) + 7\delta CH_3$
825.6	m	833	84	821	$39vC-C_{ring}+32\delta CCC_{ring}+10vCCl$
		811	4	769	$39\tau CCC_{ring} + 26\gamma CCO + 15\gamma CCN + 10\gamma CCCl$
730.6	W	744	50	735	$78\gamma CCH_{ring} + 8\gamma CCO$
		717	25	707	$21\delta(C=CH+C=CN)+17\nu CCl+13\delta CCC_{ring}+10\delta CCC+7\delta CCO+7\nu C-C_{ring}$
		642	67	629	69γCNH+10γCCN+9δCH ₃

^a vs – very strong, s – strong, m – medium, w – weak, vw – very weak, b – broad

^b only the components of PED that contribute more than 7% are taken into account

Table S9.	The selected, I	DFT/B3LYP/6-311++G(2d,2p) calculated geometrical parameters of the I_{CE} ,
	II_{CE} and II_{CK}	conformers of 2-(1-(methylimino)methyl)-6-chlorphenol (r in Å, angle values
	in degrees).	

	H18 H19 C16 H11 C10 H15 H15 H15 H15 H15 H15 H15 H15 H15 H15		
Parametr	I _{CE}	II _{CE}	II _{CK}
r C ₁ -O ₁₄ (r C ₁ =O ₁₄)	1.334	1.357	1.231
$r C_2 - C_{10} (r C_2 = C_{10})$	1.456	1.474	1.382
$r C_{10} = N_{12} (r C_{10} - N_{12})$	1.277	1.268	1.333
r C ₁₀ -H ₁₁	1.096	1.093	1.084
r N ₁₂ -C ₁₆	1.449	1.448	1.454
r O ₁₄ -H ₁₅	0.997	0.966	
r N ₁₂ -H ₁₅			1.007
r C ₆ -Cl ₉	1.749	1.763	1.746
$R N_{12} \cdots H_{15}$	1.713		
$R Cl_9 \cdots H_{15}$		2.358	
$\theta H_{19}-C_{16}-N_{12}$	112.8	113.6	109.0
$\theta C_{16}-N_{12}=C_{10} (\theta C_{16}-N_{12}-C_{10})$	119.6	118.1	124.5
$\theta N_{12} = C_{10} - H_{11} (\theta N_{12} - C_{10} - H_{11})$	120.9	121.7	115.9
$\theta H_{11}-C_{10}-C_2 (\theta H_{11}-C_{10}=C_2)$	116.2	116.2	116.3
θC_1 -O ₁₄ -H ₁₅	107.1	108.8	
θC_1 - C_6 - Cl_9	119.0	118.0	116.9
θO-H […] N	148.4		
θ O-H […] Cl		120.9	
ϕH_{19} -C ₁₆ -N ₁₂ =C ₁₀ (ϕH_{19} -C ₁₆ -N ₁₂ -C ₁₀)	0.0	0.0	0.0
$\phi C_{16}-N_{12}=C_{10}-H_{11}(\phi C_{16}-N_{12}-C_{10}-H_{11})$	0.0	0.0	0.0
ϕH_{11} - C_{10} - C_2 - $C_1 (\phi H_{11}$ - C_{10} = C_2 - $C_1)$	-180.0	0.1	0.0
φ C ₆ -C ₁ -O ₁₄ -H ₁₅	-180.0	0.0	
ϕC_2 - C_1 - C_6 - Cl_9	180.0	180.0	180.0

-

Table S10. The comparison of the DFT/B3LYP/6-311++G(2d,2p) calculated harmonic frequencies (cm⁻¹) and intensities (kmmol⁻¹) for all optimized enol conformers of 2-(1-(methylimino)methyl)-6-chlorphenol. The relative energies (ΔE_{ZPE} , kJmol⁻¹) are also given.

هي د	20-0 	نه نه ا					
	د. ا	•	•	ు తొల్లం - పోట్టం	ಿ <mark>್</mark> ಟಿಕ್ಕಿ⊸	 ?γ~>	ిత్రా
			a 🖌 🧯				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
I _{CE} 0 kJ/mol	II_{CE} ($\Delta E=25.44$)	III _{CE} (ΔE =40.86)	IV _{CE} (ΔE=44.98)	V _{CE} (ΔE=54.86)	VI_{CE} ($\Delta E=56.35$)	VII _{CE} ($\Delta E=65.46$)	VIII _{CE} ($\Delta E=67.22$)
v _{harm} . I	v _{harm.} I	v _{harm} . I	v _{harm} . I	v _{harm} . I	v _{harm} . I	v _{harm} . I	v _{harm} . I
3210 4	3750 119	3735 105	3842 64	3753 115	3751 107	3797 84	3820 84
3196 5	3213 5	3212 3	3214 5	3213 3	3212 3	3211 3	3213 3
3172 10	3207 0	3197 6	3208 0	3205 3	3196 6	3196 6	3200 5
3129 492	3190 4	3176 5	3190 4	3190 2	3176 3	3176 2	3187 1
3086 12	3076 16	3078 15	3080 13	3095 13	3092 14	3091 18	3091 21
3075 21	3063 27	3062 27	3065 26	3086 26	3083 28	3082 12	3077 15
3015 87	3043 35	2965 132	2972 103	3068 21	3068 23	3071 20	3037 16
2998 100	2979 90	2953 42	2932 73	3010 36	3014 39	3020 28	3016 37
1692 177	1708 78	1715 95	1710 100	1705 85	1712 85	1694 92	1699 79
1655 66	1636 34	1634 34	1641 29	1633 37	1633 24	1639 9	1639 17
1610 6	1609 8	1605 6	1603 15	1608 5	1608 1	1602 7	1603 15
1535 29	1507 2	1508 5	1507 9	1508 4	1506 8	1507 2	1504 11
1505 6	1503 15	1503 8	1506 13	1505 1	1505 0	1501 11	1503 1
1482 6	1480 5	1479 117	1478 5	1488 12	1486 46	1488 36	1488 11
1476 152	1478 143	1478 5	1476 107	1477 124	1472 78	1476 52	1474 95
1461 18	1442 14	1439 14	1445 26	1436 8	1434 4	1441 2	1436 6
1445 22	1410 16	1417 39	1438 11	1426 14	1408 24	1404 16	1420 15
1400 34	1369 52	1379 52	1344 51	1368 47	1371 39	1357 47	1352 61
1328 24	1294 78	1307 7	1296 12	1293 53	1288 16	1292 5	1290 10
1314 31	1273 63	1284 59	1273 60	1277 68	1275 63	1267 55	1277 55
1253 22	1244 42	1244 22	1236 83	1224 43	1229 27	1232 69	1220 103
1213 49	1191 13	1196 19	1186 32	1193 10	1191 15	1190 19	1191 19
1172 59	1156 14	1162 58	1155 4	1161 7	1162 6	1160 3	1161 7
1154 14	1146 35	1146 8	1137 136	1143 38	1149 56	1145 97	1142 79
1141 0	1140 0	1137 0	1136 0	1134 6	1134 3	1138 3	1135 18
1101 14	1094 10	1108 16	1099 14	1098 13	1097 17	1098 17	1099 15

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2011

Table S9 cd																
1027	38	1023	11	1015	24	1025	23	993	3	2	989	1	989	1	993	1
998	8	1007	3	993	5	1004	1	969	9	22	966	18	960	9	971	7
982	0	986	3	976	1	959	3	94	5	4	940	1	939	4	946	5
947	10	937	0	928	33	938	2	92	1	8	916	16	925	6	924	11
928	0	895	30	925	0	897	8	865	5	10	894	29	899	4	869	0
902	65	844	8	835	2	842	13	849	9	14	837	2	840	14	847	12
848	11	803	17	802	10	811	15	802	2	27	796	21	801	19	807	27
814	6	753	34	755	45	758	32	76	5	48	758	43	760	43	767	47
761	49	721	46	694	- 38	725	29	736	6	32	707	30	711	27	739	25
694	37	587	3	607	10	584	14	600	6	4	617	8	618	7	607	7
612	6	559	0	567	0	565	1	569	9	3	572	1	573	9	569	11
570	0	557	14	552	1	554	1	56	1	1	558	1	557	3	560	1
546	0	548	0	532	11	545	0	533	3	11	505	7	507	5	531	1

Table S11. The comparison of the DFT/B3LYP/6-311++ $G(2d,2p)$ calculated harmonic frequencies (cm ⁻¹) and
intensities (kmmol ⁻¹) for all optimized keto conformers of 2-(1-(methylimino)methyl)-6-
chlorphenol. The relative energies (ΔE_{ZPE} , kJmol ⁻¹) are also given.

ిత్రం	3			
ند <mark>ي في</mark>		್ರ- ್ಲ ್ಸ್	نې م	
a				
1	3.00			`
I _{CK} (ΔE=14.02)	II_{CK} ($\Delta E=57$.03) $\operatorname{III}_{\mathrm{CK}}(\Delta \mathrm{E}=6$	$59.25) IV_{CK} (\Delta H)$	E=71.74)
v _{harm} . I	v _{harm.} I	V _{harm} .	V _{harm} .	1
3205 9	3608 45	3644 11	8 3636	116
3188 5	3202 9	3226 10	3203	10
3159 7	3187 8	3197 5	3187	7
3146 0	3171 1	3184 6	3158	10
3122 4	3142 12	3160 3	3150	4
3096 11	3141 5	3136 16	3141	7
3070 137	3089 16	3098 11	3113	18
3038 93	3039 69	3042 24	3046	41
1692 665	1693 567	1689 42	1 1669	564
1649 127	1646 16	1641 13	1644	27
1585 127	1617 505	1592 57	2 1592	175
1540 75	1538 67	1570 28	1577	43
1519 26	1521 43	1536 20	1 1534	142
1488 5	1498 34	1518 3	1505	23
1488 7	1491 8	1496 12	1478	38
1470 43	1480 16	1487 23	1471	5
1409 45	1445 106	1463 11	9 1442	23
1374 1	1381 7	1393 15	0 1416	111
1369 30	1351 273	1360 12	5 1357	38
1312 65	1333 122	1305 2	1322	43
1262 62	1268 19	1263 9	1249	34
1193 8	1190 0	1192 10	1192	15
1151 31	1154 29	1172 3	1171	11
1150 131	1148 0	1148 0	1150	13
1146 0	1131 99	1128 51	1144	36
1079 25	1064 23	1067 24	1070	36
1025 51	1022 1	1015 1	986	6
1013 26	1021 12	989 29	974	12
973 0	964 1	970 1	960	7
943 22	927 4	935 3	932	2
941 14	905 67	862 19	903	20
918 13	833 83	832 73	831	63
845 48	811 4	813 0	812	12
816 0	744 50	766 51	750	52
755 53	718 25	751 50	699	25
667 26	642 67	606 19	623	15
600 6	591 17	596 0	614	21
568 1	549 10	546 2	563	8
547 1	548 4	538 19	527	15