Supporting Information for

Photo-deactivation pathways of a double H-bonded photochromic Schiff base investigated by combined theoretical calculations and experimental time-resolved studies

Carlos Randino^[a], Marcin Ziółek ^[b], Ricard Gelabert^[a], Juan Angel Organero^[b], Michal Gil^[b], Miquel Moreno^{*[a]}, José M. Lluch^[a] and Abderrazzak Douhal^{*[b]}

Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain) and Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquimicas, and INAMOL, Universidad de Castilla-La Mancha, Avda. Carlos III S.N. 45071 Toledo (Spain).

^[a] Universitat Autònoma de Barcelona.

^[b] Universidad de Castilla-La Mancha

Index:

- Geometries and energies of the structures.
- Stationary absorption spectrum of BSP in dichloromethane (Figure S1).
- Time constants and their fractional amplitudes for BSP in hexane and dichloromethane (Tables S1 and S2).
- Femtosecond emission transients of BSP in hexane and dichloromethane (Figures S2 and S3).
- Temporal changes in the absorbance spectrum of BSP in hexane (Figure S4).

Geometries and Energies of the Structures

In what follows the geometries of the structures discussed in the paper are presented. Each geometry is presented framed in a table as a list of lines, each specifying the atomic number and the (x,y,z)-coordinates in Ångstrom. We note that the atom sequence is not the same in each structure, but the order in which the corresponding program selected to present the structure.

Each table has a heading identifying the chemical structure by the abbreviation given in the text, and the program under which it renders this energy (GAUSSIAN or TURBOMOLE). As usual, an asterisk denotes a structure in the excited state. At the bottom, the absolute energy obtained is reproduced to 8 decimal figures.

When a single structure is given and two energies are reported this means:

- 1. If it is a CI candidate, the reported TDDFT energies of ground and excited states at that point, which ideally should be equal.
- 2. Otherwise, the structure has been optimized in the ground state with the program indicated in the header of the Table, and a point calculation has been done for the excited state (that is, this is a Franck-Condon excitation).

Energies in the paper for the ground state use as energy origin the minimum in S_0 obtained with Gaussian03. The energies appearing in the paper for the excited state structures are computed with Turbomole, using as energy origin the minimum in S_0 obtained with Turbomole to have a coherent set of data.

Stable Structures (Ground State):

	Optimiz	E ed GAUSSIAN			Optimiz	MK ed GAUSSIAN	
	.1 .				-1 -		
6	7.035922	0.864888	-0.419105	6	-6.928077	1,221692	0.109977
6	5.637698	0.745952	-0.387905	6	-5.508018	0.964739	0.107522
6	5.045147	-0.348616	0.305044	6	-5.105934	-0.436031	-0.083041
6	5.883186	-1.283625	0.946158	6	-6.095148	-1.454086	-0.247208
6	7.262362	-1.158365	0.910169	6	-7.428639	-1.149265	-0.235008
6	7.831761	-0.075609	0.221039	6	-7.834443	0.208243	-0.053971
1	7.466464	1.705326	-0.952873	1	-7.239770	2.251788	0.248227
1	5.422965	-2.115556	1.474161	1	-5.764396	-2.481826	-0.384153
1	7.894450	-1.886552	1,407173	1	-8.176843	-1.924532	-0.360997
1	8.912210	0.031894	0.186448	1	-8.897231	0.438275	-0.046432
8	4.898355	1.671884	-1.012558	8	-4.656995	1.890450	0.261684
1	3,941790	1,424287	-0.875704	6	-3.748311	-0.767292	-0.098870
6	3.607871	-0.510602	0.359938	7	-2.797753	0.154129	0.054561
7	2.796848	0.326404	-0.203313	1	-3.446130	-1.803583	-0.232403
1	3.233117	-1.377176	0.919579	6	-1.407417	-0.017071	0.046526
6	1.406636	0.126319	-0.190679	6	-0.614386	1.090164	0.388564
6	0.582627	1.263662	-0.220638	6	0.770283	0.992718	0.400976
6	-0.800675	1.143744	-0.211057	6	1.406824	-0.216151	0.067115
6	-1.406654	-0.126035	-0.190636	6	0.605510	-1.326291	-0.248428
6	-0.582602	-1.263396	-0.220811	6	-0.778870	-1.231057	-0.275417
6	0.800665	-1.143485	-0.211268	1	-1.096621	2.023802	0.662926
1	1.050560	2.242543	-0.250233	1	1.359664	1.851275	0.706122
1	-1.415361	2.036913	-0.261184	1	1.093054	-2.263846	-0.495217
1	-1.050593	-2.242248	-0.250546	1	-1.360952	-2.103063	-0.552662
1	1.415374	-2.036626	-0.261574	7	2.799180	-0.393629	0.068880
7	-2.796825	-0.326189	-0.203238	6	3.607433	0.577444	-0.215567
6	-3.607949	0.510699	0.360074	6	5.045274	0.427479	-0.159206
6	-5.045189	0.348622	0.305025	6	5.878671	1.515999	-0.489258
6	-5.883376	1.283550	0.946081	6	7.258648	1.405722	-0.444191
6	-7.262526	1.158104	0.910068	6	7.833771	0.182573	-0.063487
6	-7.831778	0.075230	0.220991	6	7.042945	-0.910112	0.265541
6	-7.035803	-0.865179	-0.419102	6	5.643799	-0.807389	0.223451
6	-5.637592	-0.746034	-0.387915	1	5.413895	2.454687	-0.781602
1	-5.423278	2.115573	1.474046	1	7.887274	2.252128	-0.699442
1	-7.894721	1.886224	1.407037	1	8.915061	0.085517	-0.025098
1	-8.912214	-0.032413	0.186405	1	7.478300	-1.859014	0.559832
1	-7.466207	-1.705709	-0.952837	1	3.229311	1.558911	-0.528952
1	-3.233266	1.377277	0.919754	8	4.909139	-1.880588	0.544309
8	-4.898134	-1.671883	-1.012559	1	3.951583	-1.618843	0.451428
1	-3.941593	-1.424217	-0.875688	1	-3.236825	1.103748	0.190281
E(S ₀)	-	-1031.7525750	5 E _h	E(S ₀)	-	-1031.7445649	98 E _h

	Optimiz	DK ed GAUSSIAN		ER Optimized GAUSSIAN					
	-1				-1 -				
6	6.952356	1.153466	-0.003544	6	6.19856	5 0.704171	1.054777		
6	5.527245	0.928986	-0.003703	6	4.85413	1 0.321923	0.926041		
6	5.094043	-0.475422	0.002231	6	4.27800	3 0.221977	-0.372743		
6	6.060960	-1.527749	0.007285	6	5.07607	6 0.514988	-1.497237		
6	7.400944	-1.252699	0.006885	6	6.40238	5 0.891310	-1.360912		
6	7.836526	0.107631	0.001421	6	6.95700	5 0.982778	-0.074351		
1	7.286363	2.185807	-0.007616	1	6.61803	1 0.773352	2.052713		
1	5.707965	-2.557195	0.011481	1	4.62783	0 0.437633	-2.485053		
1	8.132229	-2.053871	0.010624	1	7.00475	1 1.112390	-2.235605		
1	8.904267	0.313297	0.001277	1	7.99609	1 1.276836	0.043903		
8	4.695964	1.885603	-0.008074	8	4.14913	1 0.062684	2.035184		
6	3.729109	-0.774820	0.003213	1	3.22714	0 -0.183766	1.746039		
7	2.801551	0.182837	-0.001376	6	2.89706	7 -0.173643	-0.551372		
1	3.403318	-1.812598	0.008046	7	2.12090	4 -0.444630	0.448326		
6	1.408416	0.051508	-0.001456	1	2.52996	4 -0.220705	-1.584677		
6	0.644402	1.230219	-0.001546	6	0.80197	5 -0.886841	0.252991		
6	-0.742210	1.184247	-0.001635	6	-0.15525	8 -0.548672	1.224768		
6	-1.408424	-0.051505	-0.001418	6	-1.47947	6 -0.941932	1.092770		
6	-0.644409	-1.230215	-0.001746	6	-1.88705	8 -1.723700	-0.008017		
6	0.742204	-1.184244	-0.001868	6	-0.91398	2 -2.118937	-0.946673		
1	1.151226	2.190494	-0.001585	6	0.40407	4 -1.690246	-0.830013		
1	-1.294772	2.117020	-0.002274	1	0.15857	8 0.045854	2.076905		
1	-1.151234	-2.190490	-0.001943	1	-2.20859	5 -0.665387	1.846902		
1	1.294764	-2.117016	-0.002687	1	-1.21145	5 -2.775188	-1.758350		
7	-2.801557	-0.182833	-0.001319	1	1.13963	1 -2.024031	-1.555182		
6	-3.729111	0.774827	0.003360	7	-3.18427	4 -2.245119	-0.121508		
6	-5.094045	0.475426	0.002460	6	-4.26162	4 -1.553593	-0.057219		
6	-6.060969	1.527747	0.007277	6	-4.53706	1 -0.098574	-0.016021		
6	-7.400952	1.252687	0.006776	6	-5.70295	8 0.279716	0.684201		
6	-7.836522	-0.107646	0.001339	6	-6.11495	0 1.600011	0.780961		
6	-6.952343	-1.153475	-0.003322	6	-5.36994	7 2.590780	0.130737		
6	-5.527236	-0.928984	-0.002987	6	-4.23763	8 2.250717	-0.596085		
1	-5.707982	2.557196	0.011303	6	-3.80996	7 0.917553	-0.684273		
1	-8.132243	2.053854	0.010286	1	-6.28293	2 -0.502009	1.168622		
1	-8.904262	-0.313320	0.001004	1	-7.00745	6 1.856629	1.341912		
1	-7.286341	-2.185819	-0.007381	1	-5.67975	5 3.630383	0.183080		
1	-3.403321	1.812606	0.008151	1	-3.65654	2 3.000277	-1.122608		
8	-4.695941	-1.885591	-0.007447	1	-5.17739	0 -2.152796	-0.017626		
1	3.267769	1.131068	-0.004802	8	-2.73329	5 0.706869	-1.479992		
1	-3.267786	-1.131068	-0.004988	1	-2.35716	0 -0.176381	-1.344228		
F (S.)	_	1031 7360701	5 F.	T	(5.)	-1031 72	711/10 ₽.		

	Optimi:	MKR1 zed GAUSSIAN		MKR2 Optimized GAUSSIAN				
6	5.975409	-1.527579	-0.702757	6	7.40181	1 0.832312	0.251579	
6	4.641668	-0.979090	-0.651347	6	5.96686	6 1.116308	0.278123	
6	4.427038	0.106319	0.315906	6	5.07957	2 -0.055613	0.021115	
6	5.502086	0.560490	1.140335	6	5.65243	2 -1.350673	-0.228178	
6	6.746866	0.000856	1.046496	6	7.00177	1 -1.533147	-0.235660	
6	6.970913	-1.053829	0.109756	6	7.87916	7 -0.417745	0.008982	
1	6.148856	-2.329441	-1.412900	1	8.06231	9 1.673405	0.436141	
1	5.309771	1.365487	1.847046	1	5.00377	5 -2.205394	-0.415756	
1	7.561061	0.348802	1.673187	1	7.42614	0 -2.513770	-0.424945	
1	7.964584	-1.490647	0.044035	1	8.95257	7 -0.591991	-0.003092	
8	3.709175	-1.407723	-1.394300	8	5.52119	0 2.251564	0.498850	
6	3.161878	0.689962	0.426800	6	3.72895	9 0.219727	0.045122	
7	2.135588	0.290447	-0.323346	7	2.71869	4 -0.652653	-0.153106	
1	2.996294	1.488765	1.146270	1	3.46189	0 1.252162	0.246548	
6	0.822599	0.778523	-0.338593	6	1.33683	1 -0.393417	-0.136010	
6	-0.110954	0.107678	-1.146154	6	0.46258	9 -1.463263	-0.381097	
6	-1.431901	0.527375	-1.204919	6	-0.91290	2 -1.272739	-0.378341	
6	-1.864711	1.643449	-0.460487	6	-1.45833	8 -0.001924	-0.126317	
6	-0.913444	2.334773	0.315201	6	-0.57437	9 1.068486	0.088065	
6	0.404549	1.900495	0.393819	6	0.80134	2 0.883163	0.097382	
1	0.210324	-0.753108	-1.725297	1	0.86667	2 -2.450975	-0.590464	
1	-2.138535	0.000926	-1.837247	1	-1.56470	4 -2.109649	-0.607072	
1	-1.229590	3.222797	0.852863	1	-0.98887	9 2.055783	0.263668	
1	1.104607	2.459354	1.005121	1	1.44645	5 1.734425	0.279109	
7	-3.155408	2.179409	-0.573280	7	-2.83511	4 0.272091	-0.121522	
6	-4.245273	1.510698	-0.473568	6	-3.70242	1 -0.614391	0.250379	
6	-4.554658	0.119840	-0.070835	6	-5.12769	6 -0.369902	0.202306	
6	-5.697074	-0.449671	-0.674053	6	-6.02658	3 -1.368405	0.630526	
6	-6.135157	-1.729619	-0.371030	6	-7.39656	5 -1.167575	0.594853	
6	-5.443412	-2.471441	0.593888	6	-7.89479	5 0.057805	0.123653	
6	-4.337405	-1.929253	1.233224	6	-7.03815	6 1.063476	-0.303214	
6	-3.883707	-0.639748	0.919089	6	-5.64853	4 0.868627	-0.271000	
1	-6.235746	0.144294	-1.408278	1	-5.62096	6 -2.310338	0.992403	
1	-7.007376	-2.142568	-0.866705	1	-8.07599	6 -1.945489	0.926451	
1	-5.774886	-3.472068	0.855135	1	-8.96754	6 0.225845	0.091778	
1	-3.798610	-2.479413	1.997246	1	-7.41361	8 2.013566	-0.667785	
1	-5.142886	2.075955	-0.745264	1	-3.38687	2 -1.592788	0.635198	
8	-2.838370	-0.197084	1.660022	8	-4.84998	4 1.860149	-0.687416	
1	-2.447983	0.604064	1.279775	1	-3.91053	0 1.543892	-0.585742	
1	2.440542	-0.495112	-0.958999	1	2.96873	8 -1.615116	-0.339112	
$E(S_0)$		-1031 718819)2 E⊾	E	(So)	-1031 726	53511 E.	

	DKR1 Optimized GAUSSIAN				DKR2 Optimized GAUSSIAN				
	-1					. Т			
6 -	-6.912668	1.334625	0.007502	6	-7	.499612	-0.739260	-0.018782	
6 -	-5.507005	1.009571	0.005524	6	-6	.078116	-1.084247	-0.036909	
6 -	-5.174924	-0.421958	-0.012719	6	-5	.139399	0.075597	-0.003147	
6 -	-6.213913	-1.402901	-0.031214	6	-5	.654392	1.417376	0.045931	
6 -	-7.530957	-1.033597	-0.028892	6	-6	.994830	1.655235	0.059289	
6 -	-7.868735	0.354247	-0.008820	6	-7	.921086	0.552919	0.025065	
1 -	-7.172718	2.387919	0.022064	1	-8	.197109	-1.570303	-0.043333	
1 -	-5.934828	-2.454717	-0.046173	1	-4	.968026	2.262499	0.078226	
1 .	-8.317349	-1.780645	-0.041867	1	-7	.375785	2.670516	0.098112	
1 .	-8.919154	0.635305	-0.006895	1	-8	.986144	0.772327	0.036584	
8 -	-4.609484	1.904006	0.017052	8	-5	.682108	-2.258070	-0.078162	
6 -	-3.834499	-0.816498	-0.016870	6	-3	.802425	-0.257230	-0.021671	
7 -	-2.841054	0.072242	-0.003710	7	-2	.752033	0.590962	-0.016529	
1 -	-3.582304	-1.874489	-0.039074	1	-3	.581676	-1.319603	-0.051757	
6 -	-1.461053	-0.163526	0.007969	6	-1	.384718	0.264446	-0.004345	
6 -	-0.606564	0.941997	-0.131301	6	-0	.450831	1.300667	-0.151088	
6	0.772868	0.789537	-0.133606	6	0	.914413	1.047761	-0.150230	
6	1.339272	-0.486077	0.012323	6	1	.384718	-0.264443	0.004400	
6	0.486920	-1.591649	0.154091	6	0	.450830	-1.300664	0.151144	
6 -	-0.892670	-1.438025	0.154322	6	-0	.914413	-1.047758	0.150286	
1 -	-1.035163	1.932403	-0.250405	1	-0	.797117	2.323004	-0.279572	
1	1.396808	1.666016	-0.260943	1	1	.600178	1.875924	-0.282195	
1	0.910424	-2.585214	0.277657	1	0	.797116	-2.323001	0.279627	
1 .	-1.515521	-2.316044	0.283434	1	-1	.600179	-1.875921	0.282253	
7	2.726298	-0.710691	0.019818	7	2	.752032	-0.590960	0.016583	
6	3.713283	0.210912	0.032796	6	3	.802426	0.257231	0.021715	
6	5.069869	-0.028458	0.001123	6	5	.139399	-0.075599	0.003200	
6	5.675132	-1.330629	-0.079595	6	5	.654391	-1.417380	-0.045848	
6	7.028476	-1.475913	-0.107403	6	6	.994828	-1.655240	-0.059251	
6	7.877912	-0.313833	-0.055978	6	7	.921085	-0.552922	-0.025151	
6	7.369647	0.945156	0.018244	6	7	.499612	0.739259	0.018663	
6	5.927872	1.191837	0.053494	6	6	.078118	1.084242	0.036972	
1	5.047991	-2.220092	-0.126779	1	4	.968023	-2.262503	-0.078099	
1	7.477509	-2.461700	-0.171435	1	7	.375781	-2.670522	-0.098064	
1	8.955304	-0.459727	-0.079503	1	8	.986142	-0.772327	-0.036756	
1	8.008866	1.821346	0.055743	1	8	.197111	1.570305	0.043082	
1	3.417680	1.254193	0.081980	1	3	.581679	1.319604	0.051792	
8	5.453443	2.334443	0.122714	8	5	.682111	2.258076	0.077938	
1 .	-3.238109	1.051926	0.000647	1	-2	.955131	1.581833	-0.033175	
1	3.002611	-1.683822	0.024729	1	2	.955130	-1.581831	0.033239	
Π(Ο)		1001 212/240	2 12	E (Q)			1001 700110	01 5	

Stable Structures (Excited State):

	Optir	E nized TURBOMOLI	£	E* Optimized TURBOMOLE				
6 5 6 5 6 5 6 5 1 7 1 5 1 5 1 5 1 5 1 5 7 7 1 5 6 6 6 5 7 7 1 5 6 6	Optir 7.037615 5.638589 5.046679 5.885183 7.265073 7.834230 7.834230 7.468111 5.424966 7.897962 8.915208 4.897793 3.941307 3.608800 2.797685 3.233262 1.407235 0.581498	nized TURBOMOLI 0.864544 0.746567 -0.347647 -1.283452 -1.159288 -0.076894 1.704556 -2.115034 -1.887903 0.029242 1.672039 1.423238 -0.508500 0.328645 -1.374135 0.127728 1.264708	E -0.509497 -0.475750 0.219335 0.859977 0.821120 0.129755 -1.044921 1.389519 1.317516 0.092365 -1.099473 -0.960524 0.275465 -0.288851 0.836819 -0.276467 -0.306321	6 6 6 6 1 1 1 8 1 6 7 1 6 6	Optim 6.947338 5.564150 5.061415 6.001248 7.362405 7.834865 7.289469 5.632162 8.064293 8.901858 4.736349 3.799379 3.659045 2.777348 3.352929 1.423811 0.609148	ized TURBOMOLE 1.158574 0.923417 -0.430556 -1.484034 -1.234081 0.094430 2.188435 -2.506880 -2.059413 0.289046 1.962423 1.578314 -0.702439 0.285507 -1.751341 0.097743 1.232084	-0.318179 -0.239281 -0.253380 -0.349769 -0.429496 -0.414451 -0.304121 -0.360062 -0.501882 -0.477364 -0.149575 -0.091834 -0.170047 -0.066390 -0.171947 -0.060307 0.226770	
6 1 6 1 6 1 1 1 1 1 1 1 6 1 6 1 6 1 6 1 6 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.802295 1.407235 0.802295 1.408727 1.418010 1.048727 1.418010 1.048727 1.418010 2.797685 3.608800 5.046679 5.885183 7.265073 7.834230 7.037615 5.632896 5.424966 7.887962	1.264708 1.143172 -0.127728 -1.264708 -1.143172 2.244468 2.036247 -2.244468 -2.036247 -0.328645 0.508500 0.347647 1.283452 1.159288 0.076894 -0.864544 -0.746567 2.115034 1.887903	-0.306321 -0.296888 -0.276467 -0.306321 -0.296888 -0.335796 -0.347382 -0.335796 -0.347382 -0.288851 0.275465 0.219335 0.859977 0.821120 0.129755 -0.509497 -0.475750 1.389519 1.317516	° 6 6 6 6 1 1 1 7 6 6 6 6 6 6 1 1	0.009148 -0.762069 -1.425779 -0.612832 0.758724 1.111056 -1.340108 -1.115981 1.333594 -2.778004 -3.642504 -5.052666 -5.972717 -7.341022 -7.841154 -6.973667 -5.583895 -5.582226 -8.027399	1.232084 1.148913 -0.096349 -1.222002 -1.140670 2.177575 2.043426 -2.161441 -2.021002 -0.289418 0.619357 0.389911 1.352071 1.141158 -0.054448 -1.027299 -0.828667 2.272002 1.894075	0.2267/0 0.276436 0.029481 -0.294870 -0.336570 0.412077 0.482188 -0.505838 -0.603157 0.061213 0.498948 0.422592 0.902918 0.835373 0.279820 -0.200331 -0.142817 1.331779 1.210906	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.915208 7.468111 3.233262 4.897793 3.941307	-0.029242 -1.704556 1.374135 -1.672039 -1.423238 -1031.1174892 -1031.0010442	0.092365 -1.044921 0.836819 -1.099473 -0.960524	1 1 1 6 1 E (S	-8.913856 -7.337370 -3.312878 -4.775742 -3.828714	-0.218154 -1.954948 1.557307 -1.777184 -1.445443	0.227194 -0.630587 0.952898 -0.612484 -0.465857	

MK Optimized TURBOMOLE				MK* Optimized TURBOMOLE				
$\begin{array}{c c} & & -6.927566 \\ 6 & -5.507373 \\ 6 & -5.107850 \\ 6 & -6.099146 \\ 6 & -7.432864 \\ 6 & -7.836504 \\ 1 & -7.237114 \\ 1 & -5.770248 \\ 1 & -8.182905 \\ 1 & -8.899379 \\ 8 & -4.654022 \\ 6 & -3.749827 \\ 7 & -2.799150 \\ 1 & -3.447778 \\ 6 & -1.408399 \\ 6 & -0.616526 \\ 6 & 0.768815 \\ 6 & 1.407427 \\ 6 & 0.607146 \\ 6 & -0.777932 \\ 1 & -1.100208 \\ 1 & 1.357040 \\ 1 & 1.096158 \\ 1 & -1.358970 \\ 6 & 2.800377 \\ 6 & 3.607882 \\ 6 & 5.046530 \\ 6 & 5.046530 \\ 6 & 5.045570 \\ 6 & 5.645584 \\ 1 & 5.414418 \\ 1 & 7.889124 \\ \end{array}$	MK nized TURBOMOLH 1.223234 0.963550 -0.437907 -1.454418 -1.147199 0.211341 2.254104 -2.482940 -1.921380 0.443240 1.887726 -0.770739 0.150942 -1.807301 -0.019982 1.088972 0.992571 -0.217091 -1.234991 2.023358 1.852869 -2.267040 -2.108673 -0.392995 0.579229 0.429324 1.518037 1.406559 0.182198 -0.910476 -0.806815 2.457722 2.252883	2 0.144415 0.139566 -0.053499 -0.218615 -0.204264 -0.020185 0.284956 -0.357635 -0.330555 -0.010742 0.294089 -0.069225 0.085786 -0.203757 0.081722 0.423755 0.439661 0.109581 -0.205469 -0.235578 0.694643 0.743973 -0.449657 -0.511465 0.111019 -0.174153 -0.1741532 -0.455232 -0.415291 -0.036846 0.295001 0.257598 -0.745320	6 6 6 6 6 1 1 1 1 8 6 7 1 6 6 6 6 6 6 1 1 1 1 6 6 6 6 6 6 1 1	$\begin{array}{c} -6.9\\ -5.5\\ -5.1\\ -6.1\\ -7.4\\ -7.9\\ -7.2\\ -5.7\\ -8.2\\ -8.9\\ -4.7\\ -2.7\\ -3.4\\ -1.3\\ -0.6\\ 0.7\\ 1.4\\ 0.6\\ 0.7\\ -1.1\\ 1.3\\ 1.1\\ -1.3\\ 2.7\\ 3.6\\ 5.9\\ 7.3\\ 7.8\\ 7.0\\ 5.5\\ 5.5\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 7.9$	Optimi 09390 052277 45669 00818 96051 011018 273949 285412 214794 273949 285412 214794 273949 285412 214794 203487 232819 298916 447743 395844 233357 235949 33357 245108 34034 311086 244417 296022 552258 066268 332017 364047 220203 32911 325844 32017 364047 220203 32911 325844 32017 364047 220203 32911 325844 32017 364047 20203 32911 325844 32017 364047 20203 32911 325844 32017 364047 20203 235844 32017 364047 20203 29911 335684 33144 335744 335844 335844 32017 34574 34047 34047 355844 32017 345749 3457749 3457749 3457749 3457749 3457749 3457749 3457749 3457749 34577777 345777777777777777777777777777777777777	MK* 1.205612 0.948064 -0.447398 -1.443244 -1.447398 -1.443244 -1.149777 0.173520 2.244965 -2.482535 -1.959734 0.411264 1.891524 -0.805655 0.102476 -1.851650 -0.032887 1.139339 1.085402 -0.160076 -1.331956 -1.280740 2.098689 2.007608 -2.285753 -2.204841 -0.331178 0.681655 0.476131 1.574896 1.401509 0.107722 -0.997349 -0.837241 2.572495 2.259868	0.093754 0.083474 -0.010167 -0.081597 -0.067561 0.019701 0.162511 -0.150724 -0.125284 0.030898 0.152785 -0.030079 0.036039 -0.101981 0.026728 0.137202 0.132582 0.008901 -0.087010 -0.082589 0.235067 0.245129 -0.174084 -0.166779 -0.012538 -0.092588 -0.092588 -0.058125 -0.156049 -0.123260 0.009430 0.106655 0.074904 -0.257839 -0.199146	
$\begin{array}{cccccccc} 1 & 8.918222 \\ 1 & 7.481405 \\ 1 & 3.228338 \\ 8 & 4.910473 \\ 1 & 3.952822 \\ 1 & -3.240010 \end{array}$	0.084197 -1.860239 1.560950 -1.879222 -1.615873 1.101290	-0.002939 0.587505 -0.486043 0.579918 0.487894 0.220397	1 1 8 1	8.9 7.4 3.3 4.8 3.8 -3.2	940762 114499 310644 346323 399487 219263	-0.036867 -2.003817 1.714192 -1.924016 -1.593203 1.062984	0.036000 0.208434 -0.212157 0.167743 0.119078 0.102543	
E (S ₀) E (S ₁)	-1031.1094146	56 E _h 37 E _h	E (;	S1)		-1031.017274	73 E _h	

	DK* Optimized TURBOMOLE				ER Optimized TURBOMOLE				
6 6 5 6 5 6 6 7 1 7 1 5 1 8 1 8 4 6 3 7 2 1 3 6 1 6 1 6 - 0	Optin 989175 564855 127706 061875 456208 901827 314639 725183 160870 967115 736998 710257 793733 405908 382198 636535 748507	nized TURBOMOL 1.160213 0.930288 -0.461465 -1.482222 -1.213920 0.107634 2.195190 -2.516649 -2.038063 0.318673 1.890765 -0.787653 0.134443 -1.830884 0.019244 1.205354 1.175561	E 0.019326 0.012772 -0.005741 -0.016941 -0.010757 0.007486 0.033454 -0.030634 -0.020126 0.012600 0.022517 -0.011611 0.001475 -0.027039 0.001645 -0.005426 -0.005426 -0.007169	6 6 6 6 6 6 1 1 1 1 8 1 6 7 1 6 7	6.2 4.8 4.2 5.0 6.4 6.9 6.6 4.6 6.9 7.9 7.9 4.1 3.2 2.9 2.1 2.5 0.8	Optim: 206425 364672 286167 778140 401324 58970 528136 527628 998940 95855 64049 242233 906734 .35097 335246 115354 41991	ized TURBOMOLE 0.631281 0.236959 0.143135 0.454796 0.844120 0.928887 0.695351 0.382910 1.081112 1.232512 -0.038656 -0.286448 -0.260392 -0.540001 -0.303276 -0.981879 -0.636884	1.093855 0.965073 -0.333826 -1.458293 -1.321638 -0.035116 2.091748 -2.445982 -2.195988 0.082930 2.072910 1.782309 -0.510653 0.490825 -1.543037 0.297734 1.268120	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.440140 .663038 .714730 .151931 .296698 .179733 .264123 .795227 .736834 .096535 .083343 .428491 .856819 .945922 .531971 .744447 .62094 .922018 .266818 .404021 .689562 .223207 .296855	-0.066783 -1.260520 -1.222522 2.163276 2.109603 -2.215514 -2.159288 -0.180091 0.819268 0.503497 1.537965 1.249058 -0.105250 -1.142049 -0.909033 2.572874 2.050243 -0.325623 -2.179627 1.851938 -1.870760 1.090459 -1.117630	$\begin{array}{c} -0.007163\\ -0.007163\\ 0.007463\\ 0.008886\\ -0.010447\\ -0.012491\\ 0.014136\\ 0.018156\\ -0.001956\\ -0.008746\\ -0.008746\\ -0.004762\\ -0.011738\\ -0.007116\\ 0.004765\\ 0.011572\\ 0.007116\\ -0.007118\\ -0.020708\\ -0.012397\\ 0.008514\\ 0.020601\\ -0.017433\\ 0.013160\\ 0.013364\\ 0.005367\end{array}$	6 6 6 6 1 1 1 1 7 6 6 6 6 6 6 1 1 1 1 1	$\begin{array}{c} -0.1\\ -1.4\\ -1.8\\ -0.9\\ 0.4\\ 0.1\\ -2.1\\ -1.2\\ 1.1\\ -1.2\\ -4.5\\ -5.6\\ -6.0\\ -5.3\\ -4.2\\ -3.7\\ -6.2\\ -5.6\\ -3.6\\ -5.1\\ -2.7\\ -2.3\end{array}$	48255 468255 468255 477763 415505 73132 97935 204002 50892 577539 52390 52390 52555 585435 590263 338589 206767 71498 709673 334978	-0.030834 -1.025280 -1.809834 -2.212722 -1.788034 -0.039641 -0.742179 -2.870634 -2.126910 -2.324726 -1.628283 -0.171294 0.214134 1.537502 2.524105 2.176654 0.840378 -0.564286 1.799716 3.565995 2.922737 -2.223244 0.622708 -0.260387	1.20614 1.135567 0.036624 -0.899738 -0.783407 2.118415 1.887292 -1.709924 -1.507037 -0.078069 -0.016617 0.021881 0.721085 0.816514 0.165981 -0.559618 -0.646580 1.206031 1.376694 0.217400 -1.086371 0.022607 -1.440562 -1.299139	
E (S ₁)		-1031.011582	15 E _b	E (S ₀) S ₁)		-1031.091950	84 E _h 27 E _b	

		MKR1	
	Optim	1ZEG TURBOMOLE	
6	5.971685	-1.503617	-0.743236
6	4.638816	-0.951370	-0.692927
6	4.424216	0.129435	0.280130
6	5.498320	0.576636	1.110671
6	6.742752	0.014332	1.016953
6	6.966826	-1.036530	0.074781
1	6.144940	-2.302754	-1.457095
1	5.305841	1.378367	1.821519
1	7.556595	0.357096	1.647755
1	7.960026	-1.475663	0.009431
8	3.706886	-1.373093	-1.441379
6	3.159095	0.715139	0.390181
7	2.134957	0.321453	-0.367088
1	2.991798	1.510119	1.113876
6	0.822112	0.811105	-0.383112
6 -	0.111791	0.143482	-1.194081
6 -	1.433094	0.564096	-1.251769
6 -	1.865339	1.678873	-0.504262
6 -	0.913630	2.367981	0.273809
6	0.404578	1.932053	0.352040
1	0.209440	-0.716041	-1.776051
1 -	2.140695	0.039589	-1.885502
1 -	1.229526	3.255214	0.813942
1	1.104875	2.488776	0.965867
6 -	3.157272	2.212914	-0.613600
6 -	4.245648	1.541580	-0.510421
6 -	4.547175	0.148668	-0.106181
6 -	5.683187	-0.431535	-0.712743
6 -	6.110870	-1.715743	-0.409200
6 -	5.416055	-2.449979	0.560394
6 -	4.316613	-1.896604	1.203190
6 -	-3.872115	-0.603551	0.887652
1 -	6.224765	0.156888	-1.449820
1 -	6.977530	-2.137905	-0.907827
1 -	-5.739883	-3.453367	0.822568
1 -	-3.775912	-2.440443	1.970891
-	-5.146559	2.104271	-0.779270
8 -	-2.832397	-0.150091	1.630119
1 -	-2.446607	0.651521	1.246586
Ţ	2.442904	-0.461303	-1.006/89
$E(S_0)$		-1031 08357418	E.
$E(S_1)$		-1030.97936330	E _h

	Optin	MKR2 nized TURBOMOLE	E	MKR2* Optimized TURBOMOLE				
6 6 6 6 6 6 6 6 1 1	Optim 7.443967 6.008776 5.122064 5.695192 7.044733 7.921972 8.104090 5.046531 7.469480 8.995523 5.562614 3.771143 2.761070 3.503786 1.378673 0.505000 0.871290 1.418393 0.534824 0.841745 0.910228 1.522147 0.950524 1.486070 2.795731 3.661516 5.087257 5.985189 7.355467 7.854576 6.998591 5.608601 5.578923 8.034686 8.927570 7.374830 3.343769 4.809850	1.009556 1.297219 0.121981 -1.178844 -1.364171 -0.246005 1.852851 -2.035783 -2.349161 -0.422829 2.437499 0.399498 -0.475392 1.435895 -0.216505 -1.286906 -1.097849 0.172186 1.243545 1.059675 -2.274001 -1.935512 2.230150 1.911403 0.444560 -0.446257 -0.199343 -1.202402 -0.996856 0.237713 1.247652 1.048248 -2.151317 -1.777985 0.409441 2.204701 -1.429547 2.042812	0.250304 0.252821 0.006456 -0.213761 -0.201351 0.035511 0.428709 -0.393615 -0.368362 0.040726 0.446576 0.014233 -0.178900 -0.165279 -0.413964 -0.154454 0.061529 0.070279 -0.626093 -0.641386 0.240800 0.255359 -0.141950 0.225376 0.14271 0.592745 0.144732 -0.275481 -0.259294 0.956520 0.918737 0.126109 -0.259294 0.956520 0.918737 0.1261097 0.596698 -0.667740	6 6 6 6 1 1 1 8 6 7 1 6 6 6 1	-7.3 -5.8 -5.1 -5.8 -7.2 -7.9 -7.9 -7.9 -5.2 -3.6 -2.8 -3.2 -1.3 -0.6 0.7 1.4 0.6 -0.7 1.4 0.6 -0.7 1.1 1.3 1.1 -1.3 2.7 3.6 5.0 5.9 7.9 7.8 7.9 7.8 7.9	Optimi 27862 78049 29940 10391 15725 62492 75163 76874 23792 45817 92465 87144 18600 98103 67313 23544 57713 59905 47603 27422 24225 10369 54509 54509 54509 54509 54509 64998 58068 34684 81961 37124 49933 31019 85924 59144 36451 000756 70073	-2ed TURBOMOLE -0.688889 -0.781504 -0.149656 0.491826 0.551439 -0.039786 -1.154043 0.959089 1.057893 0.019350 -1.367702 -0.265536 0.223488 -0.823476 0.074417 1.063117 0.966127 -0.124675 -1.093848 -1.001287 1.908553 1.745520 -1.928106 -1.756751 -0.305293 0.501109 0.328938 1.171638 1.023898 0.017680 -0.833326 -0.698633 1.952331 1.687547 -0.104933 -1.621061 1.298205 -1.542180	$\begin{array}{c} 1.253024\\ 1.306695\\ 0.207604\\ -0.817486\\ -0.821829\\ 0.215300\\ 2.065101\\ -1.640358\\ -1.634435\\ 0.190835\\ 2.238866\\ 0.300710\\ -0.512810\\ 1.149473\\ -0.390729\\ 0.257704\\ 0.310259\\ -0.307872\\ -0.980019\\ -1.032859\\ 0.725143\\ 0.820690\\ -1.454799\\ -1.557351\\ -0.321168\\ 0.347853\\ 0.255883\\ 0.973366\\ 0.891560\\ 0.081519\\ -0.638752\\ -0.566809\\ 1.600397\\ 1.454543\\ 0.010925\\ -1.271075\\ 1.004090\\ -1.274636\end{array}$
	3.870612 3.011688	1.720371 -1.440294	-0.577938 -0.353046	1 1	3.9 -3.1	20097	-1.272586 0.753735	-1.071744 -1.312910
E(S₀) E(S₁)		-1031.0913474	o Eh 1 Eh		E(S1)		-1031.006101	48 Eb

Opti	DKR1 mized TURBOMOLI	E	DKR2 Optimized TURBOMOLE				
Opti 6 -6.872557 6 -5.467309 6 -5.139546 6 -6.181693 6 -7.498340 6 -7.498340 6 -7.498340 6 -7.498340 6 -7.498340 6 -7.498340 6 -7.29161 1 -5.905868 1 -8.287458 1 -8.287458 1 -8.287458 1 -8.287458 1 -8.287458 1 -8.287458 1 -8.287458 6 -7.79244 7 -2.804526 1 -3.549358 6 -1.424346 6 -0.569423 6 -0.855540 1 -0.998437 1 1.434347 1 0.948775 1 -1.478011 7 2.765006 6 5.718624	mized TURBOMOL: 1.520565 1.190777 -0.242263 -1.220792 -0.847099 0.542595 2.575180 -2.274092 -1.592131 0.826693 2.082610 -0.640047 0.248168 -1.699186 0.011450 1.118770 0.966364 -0.311213 -1.418880 -1.265341 2.110816 1.844795 -2.414268 -2.145913 -0.535820 0.387268 0.151051 -1.149231 -1.290458 -0.125899 1.131546 1.373923 -2.040525 -2.274945 -0.268882 2.009804 1.430074 2.514869 1.228900 1.22890 1.228900 1.228900 1.228900 1.228900 1.22890 1.2	E -0.004393 -0.002290 0.005039 0.007120 0.004854 -0.000697 -0.009227 0.011443 0.007235 -0.002287 -0.008267 0.005233 0.000511 0.003029 0.007609 -0.121132 -0.127367 0.003857 0.133479 0.137284 -0.227801 -0.245640 0.243402 0.245640 0.243402 0.253626 0.008746 0.0034279 0.007227 -0.079263 -0.079263 -0.079263 -0.073563 -0.135804 -0.167368 -0.052964 0.092167 0.091359 0.148822 -0.010091	6 6 6 6 6 1 1 1 1 8 6 7 1 6 6 6 6 6 6 1 1 1 1 7 6 6 6 6 6 6	$\begin{array}{c} -7. \\ -6. \\ -5. \\ -5. \\ -6. \\ -7. \\ -8. \\ -4. \\ -7. \\ -8. \\ -3. \\ -2. \\ -3. \\ -1. \\ -0. \\ 0. \\ 1. \\ 0. \\ -0. \\ -1. \\ 2. \\ 3. \\ 5. \\ 5. \\ 6. \\ 7. \\ 6. \\ 4. \\ 7. \\ 8. \\ 3. \\ 5. \\ -2. \end{array}$	Optim 502842 080518 142352 658107 999355 925537 199953 971850 381124 991199 683746 804680 753522 584904 385646 451446 914601 797930 600145 797922 600149 7535447 804966 142446 657399 998501 925350 503430 081310 970635 379651 990880 201044 585762 685260 956605	<pre>nized TURBOMOLI -0.740202 -1.084712 0.076214 1.418376 1.655703 0.552326 -1.572097 2.264190 2.671193 0.771277 -2.258666 -0.256860 0.591648 -1.320005 0.264871 1.302414 1.050070 -0.263423 -1.300928 -1.048567 2.325750 1.879876 -2.324291 -1.878280 -0.590460 0.257603 -0.076241 -1.418861 -1.657028 -0.554088 0.738831 1.084250 -2.264390 -2.672861 -0.773707 1.570392 1.320935 2.258586 1.582888</pre>	$\frac{5}{-0.020468} \\ -0.035912 \\ -0.001382 \\ 0.046061 \\ 0.057234 \\ 0.022163 \\ -0.046209 \\ 0.078737 \\ 0.094673 \\ 0.031884 \\ -0.075752 \\ -0.011965 \\ -0.046585 \\ -0.001288 \\ -0.143138 \\ -0.143515 \\ 0.003888 \\ 0.143985 \\ 0.143555 \\ -0.266350 \\ -0.266350 \\ -0.266350 \\ -0.270125 \\ 0.269008 \\ 0.273758 \\ 0.013764 \\ 0.016406 \\ -0.000138 \\ -0.043199 \\ -0.054121 \\ -0.022991 \\ 0.015312 \\ 0.029792 \\ -0.072441 \\ -0.088493 \\ -0.032237 \\ 0.038012 \\ 0.041976 \\ 0.065215 \\ -0.027730 \\ -0.0208 \\ -0.020$
E (S ₀) E (S ₁)	-1031.0824307	72 E _h	<u>н</u> Н	$E(S_0)$		-1031.064806	19 E _h 20 Ey

Possible Degeneracy Points ("Conical Intersections"):

		CI E⇔ER TUDDOMOIE				(CI MK↔MKRI	
		TORBOMOLE					IURBOMOLE	
6	-6.347102	1,134666	1.005702	6	-6.	512668	0.586872	-0.404304
6	-5.025080	0.927391	0.579264	6	-5	086919	0.350227	-0.464042
6	-4 639996	-0 359026	0 082013	6	-4	659072	-1 051801	-0 642830
6	-5.604005	-1.396102	0.055150	6	-5.	639776	-2.085938	-0.743583
6	-6.897802	-1.182148	0.490389	6	-6.	976908	-1.798058	-0.679904
6	-7.264061	0.094565	0.960188	6	-7.	406392	-0.443231	-0.508406
1	-6.619195	2.118253	1.373575	1	-6.	833312	1.615131	-0.273118
1	-5.306440	-2.371005	-0.323556	1	-5.	301227	-3.111557	-0.873834
1	-7.624394	-1.987616	0.471928	1	-7.	716508	-2.588557	-0.757837
1	-8.282126	0.270762	1.296288	1	-8.	472618	-0.235028	-0.459183
8	-4.153991	1.934693	0.674882	8	-4.	248724	1.289604	-0.367677
1	-3.270082	1.588556	0.367210	6	-3.	297804	-1.368654	-0.698857
6	-3.318732	-0.597517	-0.421856	7	-2.	347179	-0.428458	-0.596413
7	-2.341421	0.258932	-0.222730	1	-2.	985214	-2.402331	-0.817201
1	-3.123246	-1.598768	-0.819812	6	-0.	975095	-0.568621	-0.626375
6	-1.049313	0.050797	-0.638662	6	-0.	184904	0.577790	-0.332881
6	-0.109137	1.075949	-0.312967	6	1.	183051	0.507753	-0.298867
6	1.208534	0.981895	-0.661320	6	1.	883087	-0.727868	-0.597045
6	1.703422	-0.172078	-1.391535	6	1.	046313	-1.875184	-0.901010
6	0.728451	-1.202099	-1.719982	6	-0.	319758	-1.796552	-0.920934
6	-0.581257	-1.096127	-1.357475	1	-0.	688846	1.516182	-0.115715
1	-0.476394	1.944410	0.225188	1	1.	768234	1.392339	-0.078482
1	1.894840	1.773991	-0.391336	1	1.	550991	-2.802112	-1.150319
1	1.082971	-2.064138	-2.274605	1	-0.	896809	-2.676243	-1.188441
1	-1.264705	-1.893515	-1.629374	7	З.	188035	-0.880895	-0.656930
7	2.926486	-0.350014	-1.805479	6	4.	118285	0.154600	-0.699993
6	3.946746	0.515696	-1.350956	6	4.	792702	0.813710	0.332690
6	4.740683	0.312436	-0.214331	6	5.	754341	1.826138	-0.001391
6	5.690071	1.310302	0.185267	6	6.	370165	2.586942	0.971089
6	6.458551	1.171305	1.324717	6	6.	064066	2.378419	2.327924
6	6.324475	0.026097	2.130474	6	5.	155437	1.381004	2.697268
6	5.427140	-0.981486	1.764812	6	4.	543325	0.589506	1.733953
6	4.653197	-0.865294	0.614743	1	5.	982055	1.987858	-1.052132
1	5.790066	2.196981	-0.435177	1	7.	091429	3.348452	0.688534
1	7.165734	1.948596	1.598952	1	6.	540070	2.981200	3.094491
1	6.918017	-0.081400	3.033018	1	4.	907211	1.202556	3.738409
1	5.321991	-1.884803	2.357367	1	4.	347517	0.494055	-1.714365
1	4.202646	1.369284	-1.976571	8	З.	679744	-0.380426	2.142307
8	3.876454	-1.926460	0.261793	1	З.	378280	-0.875724	1.363545
1	3.446590	-1.720460	-0.588968	1	-2.	794604	0.516899	-0.468140
$E(S_{c})$		-1031.0350187	72 Eu	E	(S ₀)		-1031.034137	97 E.
$E(S_1)$		-1031.0301732	 21 Eh	E	(S1)		-1031.029558	65 Eh
- (01)		2001.0001/02		L – –	\ → ⊥ /		2001.020000	

CI MK↔MKR2 TURBOMOLE				CI DK⇔DKR1 TURBOMOLE				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.507228 5.091733 4.790715 5.778722 7.128944 6.770252 5.492877 7.901758 8.524177 4.176828 3.365443 2.649674 2.852664 1.268939 0.740643 0.583201 1.417316 0.583201 1.417316 0.583201 1.417316 0.583201 1.417316 0.583201 1.417316 0.583201 1.417316 0.583201 1.417316 0.58585 0.456377 1.371581 0.991966 1.507944 0.848570 2.757101 3.211407 4.606662 5.022634 6.387806 7.341673 6.968513 5.587443 4.271750 6.703822 8.394635 7.695163 2.526730 5.256921	TURBOMOLE 2.782405 2.474476 1.055033 0.079006 0.443473 1.803888 3.832267 -0.967159 -0.309214 2.083289 3.328615 0.708588 0.675264 0.463502 0.353330 0.557337 0.254344 -0.273004 -0.444259 -0.151981 0.971816 0.451067 -0.832672 -0.314219 -0.589495 -1.011344 -1.239823 -1.707776 -1.951440 -1.718241 -1.260091 -1.011548 -1.872234 -2.309524 -1.900545 -1.082332 -1.246286 -0.583675	$\begin{array}{c} 1.795878\\ 1.807022\\ 1.661638\\ 1.531207\\ 1.527763\\ 1.663486\\ 1.888362\\ 1.434856\\ 1.434856\\ 1.411501\\ 1.661632\\ 1.934044\\ 1.699289\\ 0.619262\\ 2.630216\\ 0.425703\\ -0.859680\\ -1.124724\\ -0.100392\\ 1.197005\\ 1.463929\\ -1.642922\\ -2.109781\\ 1.980637\\ 2.462028\\ -0.281779\\ -1.434766\\ -1.671519\\ -2.933650\\ -3.199673\\ -2.176651\\ -0.927394\\ -0.649609\\ -3.701891\\ -4.172820\\ -2.376757\\ -0.142201\\ -2.259520\\ 0.584386\end{array}$	6 6 6 6 6 1 1 1 1 8 6 7 1 6 6 6 6 6 6 1 1 1 1 7 6 6 6 6 6 1 1 1 1	6.777589 5.528528 4.340288 4.433056 5.671574 6.838541 7.679772 3.517639 5.739217 7.809061 5.447617 3.048008 2.419418 2.572206 1.181060 0.756565 -0.450393 -1.267583 -0.834432 0.371845 1.382558 -0.745293 -1.453861 0.672106 -2.495727 -3.096369 -4.308641 -5.162644 -6.768455 -6.009543 -4.721452 -4.863224 -6.987659 -7.721228 -6.323684 -2.576003 -4.020389	Provide TURBOMOLE -2.157509 -1.422362 -2.291092 -3.691099 -4.327710 -3.536078 -1.552726 -4.280586 -5.410820 -4.029044 -0.172011 -1.626029 -1.284021 -1.359278 -0.632628 -0.401476 0.229442 0.648259 0.415020 -0.215643 -0.719053 0.391646 0.735646 -0.372769 1.287213 1.604688 2.234993 2.674050 3.291035 3.514626 3.124950 2.455119 2.515011 3.619482 4.010342 3.292639 1.33886 2.094052	1.616635 1.625385 1.669740 1.687767 1.670076 1.637355 1.594487 1.717479 1.682333 1.627085 1.572765 1.727045 0.624031 2.670677 0.435000 -0.881545 -1.142797 -0.076516 1.242653 1.502746 -1.711507 -2.172400 2.076468 2.532413 -0.264414 -1.438355 -1.598710 -0.525664 -0.782216 -2.143678 -3.202681 -3.019136 0.509879 0.031741 -2.316030 -4.228159 -2.353121 -3.974415	
1 -3 E(S ₀)	4.269090 3.177561	-0.480254 0.939413 -1031.0315036	0.598001 -0.212116 1 E _h	1 1 E (S ₀	-2.982805	-1.533350 1.538184 -1031.0065482	-0.208855 0.586440 20 E _h	
$E(S_1)$	1	-1031.0309829	5 E.	E(S1)	-1031.0046978	39 E.	

		CI	DKR1↔DKR2 TURBOMOLE	
6	-7	438535	-0.999500	0.019078
6	-6	.008867	-1.304540	-0.041893
6	-5	.103738	-0.114825	-0.010096
6	-5	.652123	1.212198	0.072261
6	-6	.998015	1.409463	0.121783
6	-7	.894413	0.281227	0.094461
1	-8	.115121	-1.848132	0.000590
1	-4	.986622	2.074929	0.100960
1	-7	.405505	2.413643	0.185130
1	-8	.965200	0.468406	0.136408
8	-5	.579287	-2.470128	-0.116694
6	-3	.761352	-0.393022	-0.064322
7	-2	.766235	0.525744	-0.079720
1	-3	.482141	-1.441473	-0.104553
6	-1	.389159	0.293195	-0.092503
6	-0	1.528937	1.397017	-0.244675
6	C	.847796	1.238069	-0.264683
6	1	.400640	-0.045388	-0.143541
6	C	1.550976	-1.148539	0.014460
6	-0	.826977	-0.990088	0.040260
1	-0	.951025	2.391/08	-0.359960
1	L L		2.113337	-0.3/45/0
1	_1	451714	-1 964341	0.130004
1 7	-1	, 4JI/14	-0.282202	-0 160651
6	4	802233	-0.232202	-0.105368
6	5	175898	0.370007	-0 076062
6	5	987560	-0.095201	-1 199759
6	7	. 323592	-0.434141	-1.048292
6	7	.851420	-0.576947	0.261011
6	7	.070253	-0.403992	1.378735
6	5	.673896	-0.013262	1.303482
1	5	.560115	-0.015168	-2.198933
1	7	.962923	-0.555927	-1.916530
1	8	.907325	-0.812492	0.377616
1	7	.459937	-0.569211	2.379884
1	3	.544463	1.626517	-0.191819
8	4	.940636	0.131312	2.305778
1	-3	.067728	1.500914	-0.103683
1	(*)	.068652	-1.261527	-0.115101
F(C.)			-1031 00573372	F.
$E(S_1)$			-1031.00325583	⊷n E _b

Maxima on the Proton-Transfer Coordinates:

Transition State Structure E→MK Optimized GAUSSIAN		Transition State Structure E*→MK* Optimized TURBOMOLE						
	T					L.		
6	-6 852665	-1 166304	-0 385161	6	6	842840	1 255550	-0 055444
6	-5 460374	-0 865815	-0.308024	6	5	169166	0 890201	-0 080769
C C	-5.400374	-0.003013	-0.303024	C	J. E	409400	0.090201	-0.000709
0	-5.090766	0.42/824	0.237742	o C	5.	1006028	-0.4888/9	-0.330120
6	-6.092201	1.333//3	0.6/3/25	6	6.	108622	-1.411/84	-0.538354
6	-7.424564	1.006004	0.581616	6	7.	471699	-1.031595	-0.509993
6	-7.792070	-0.255610	0.045957	6	·/ .	830887	0.299384	-0.268234
1	-7.137073	-2.130517	-0.793004	1	·/ .	081098	2.296861	0.134796
1	-5.785687	2.295226	1.080673	1	5.	850183	-2.450936	-0.727045
1	-8.190246	1.699372	0.912692	1	8.	237442	-1.782539	-0.677162
1	-8.846810	-0.509338	-0.024726	1	8.	877610	0.585834	-0.246880
8	-4.556097	-1.701179	-0.700995	8	4.	544136	1.790613	0.119476
1	-3.437905	-1.067709	-0.459366	1	З.	566197	1.209867	0.042226
6	-3.714359	0.743783	0.327467	6	3.	684016	-0.855633	-0.350417
7	-2.818008	-0.130491	-0.083520	7	2.	793223	0.087848	-0.142282
1	-3.400483	1.700180	0.748196	1	3.	411779	-1.894537	-0.533091
6	-1 426604	0 034027	-0 089735	6	1	422771	-0 049758	-0 115584
6	-0 637271	-1 116124	-0.252287	6	1. 0	652676	1 113266	0.135387
6	0.037271	_1 020010	-0.269192	6	_0.	724163	1 060420	0.190010
6	1 200222	-1.029010	-0.200192	G	-0.	1232220	1.009420	0.109919
0	1.309232	1 200150	-0.119723	0	-1.	423229	-0.100094	-0.003007
6	0.593937	1.366136	-0.000615	6	-0.	640424	-1.320594	-0.2/1846
6	-0./91006	1.282961	0.021009	6	0.	/34164	-1.2/8/14	-0.324/45
1	-1.126671	-2.078104	-0.369874	1	1.	173626	2.056125	0.282727
1	1.336025	-1.927997	-0.428581	1	-1.	271790	1.988350	0.367983
1	1.086837	2.329853	0.077455	1	-1.	168020	-2.256893	-0.428443
1	-1.375068	2.194248	0.095096	1	1.	284415	-2.192243	-0.527602
7	2.782765	0.381161	-0.137251	7	-2.	783847	-0.323435	0.036797
6	3.582278	-0.536167	0.305684	6	-3.	624667	0.636970	0.392738
6	5.021489	-0.404051	0.239633	6	-5.	041759	0.433615	0.380502
6	5.845021	-1.430917	0.745232	6	-5.	922613	1.472252	0.772129
6	7.225989	-1.336677	0.695153	6	-7.	296863	1.297848	0.768981
6	7.812179	-0.192415	0.130481	6	-7.	838862	0.062880	0.369676
6	7.031256	0.838747	-0.373975	6	-7.	007130	-0.982649	-0.020719
6	5.631115	0.751637	-0.328147	6	-5.	614798	-0.820543	-0.023434
1	5.371712	-2.309030	1.178239	1	-5.	493266	2.423635	1.079211
1	7 846944	-2 135412	1 086515	1	-7	951814	2 109118	1 072774
1	8 89/356	-0 108564	0.086350	1	-8	916131	_0 079943	0 365552
1	7 475152	1 706770	0.0000000	1	0.	100500	1 042422	0.303332
1	1.4/JLJJ 2 105207	1 152275	-0.010920	1	-/.	4UOJOU 272611	-1.942422 1.617201	-U.JJU/01
1	3.19338/	-1.4000/0	0./0/030	1 0	-3.	2/2011 0/105/	1.01/321	0.121134
8	4.906085	1.764008	-0.820503	1	-4.	041004	-1.846368	-0.403261
Ţ	3.946100	1.525636	-0.696036	1	-3.	890455	-1.526598	-0.328154
E(S ₀)		1031.7430062	3 E _h	E	(S1)		-1031.009455	37 E _h

Transition State Structure MK-DK			Transition State Structure MK*→DK*					
	Optimiz	Zed GAUSSIAN				Optim	LZEG TURBOMOLE	
				6	<i>.</i>			0 04 65 0 0
6	-6.940209	1.141998	0.057194	6	6.	985066	1.142315	0.016528
6	-5.513887	0.923536	0.056068	6	5.	560429	0.919981	0.012326
6	-5.074479	-0.475694	-0.044050	6	5.	117737	-0.468696	-0.005552
6	-6.036875	-1.528831	-0.130761	6	6.	046634	-1.493138	-0.018015
6	-7.377826	-1.259465	-0.124382	6	7.	444783	-1.233072	-0.014107
6	-7.819492	0.095781	-0.029086	6	7.	895262	0.084674	0.003199
1	-7.278813	2.170289	0.129745	1	7.	315982	2.175661	0.030004
1	-5.679296	-2.554171	-0.202636	1	5.	704574	-2.525945	-0.031046
1	-8.105585	-2.061127	-0.190571	1	8.	144395	-2.061486	-0.024565
1	-8.888110	0.296840	-0.025261	1	8.	961250	0.292513	0.006530
8	-4.687354	1.880322	0.136966	8	4.	736587	1.885327	0.023435
6	-3.708812	-0.770004	-0.052370	6	З.	697492	-0.789090	-0.009911
7	-2.783958	0.187192	0.028650	7	2.	786421	0.139305	0.004542
1	-3.379162	-1.804033	-0.123828	1	3.	387345	-1.830580	-0.025766
6	-1.390477	0.058915	0.024626	6	1.	375196	0.033437	0.005328
6	-0.630359	1.229977	0.182957	6	Ο.	637375	1.225420	-0.000640
6	0.755990	1.183272	0.190845	6	-0.	747510	1.203392	-0.002452
6	1.426666	-0.040693	0.029324	6	-1.	451423	-0.033884	0.002255
6	0.664196	-1.211422	-0.117125	6	-0.	679416	-1.231038	0.010189
6	-0.722781	-1.167388	-0.122985	6	0.	699138	-1.204149	0.011651
1	-1.140480	2.179593	0.314127	1	1.	160309	2.179411	-0.004734
1	1.311375	2.102105	0.344977	1	-1.	288320	2.142249	-0.006694
1	1.176264	-2.160604	-0.239825	1	-1.	204723	-2.181146	0.015948
1	-1.274924	-2.091858	-0.249519	1	1.	242882	-2.144311	0.020115
7	2.820530	-0.169214	0.021766	7	-2.	809000	-0.151445	0.000871
6	3.704492	0.797314	-0.132748	6	-3.	714867	0.857309	-0.008438
6	5.084989	0.494527	-0.087153	6	-5.	085083	0.536083	-0.005672
6	6.072840	1.499992	-0.255247	6	-6.	094120	1.539890	-0.015593
6	7.410262	1.184269	-0.214848	6	-7.	433490	1.207853	-0.012374
6	7.797867	-0.164980	-0.005125	6	-7.	816131	-0.154127	0.000980
6	6.873013	-1.172299	0.159333	6	-6.	868142	-1.165353	0.010775
6	5.475328	-0.888187	0.125634	6	-5.	480186	-0.870826	0.007792
1	5.751193	2.527020	-0.415199	1	-5.	786082	2.584100	-0.025773
1	8.165363	1.952650	-0.341328	1	-8.	191820	1.985535	-0.019988
1	8.856914	-0.408420	0.025725	1	-8.	872663	-0.411465	0.003601
1	7.172881	-2.202659	0.318432	1	-7.	155368	-2.212473	0.020968
1	3.376825	1.822610	-0.309730	1	-3.	392397	1.896477	-0.018592
8	4.584325	-1.811838	0.273514	8	-4.	579401	-1.810177	0.016608
1	3,452626	-1.156817	0.168532	1	3.	223973	1.092628	0.016307
1	-3.251520	1.131171	0.099008	1	-3.	472688	-1.151163	0.009959
_		/1		_	0.			
$E(S_0)$	-	1031.7347005	6 E.	E	(S_1)		-1031.010128	24 En

Maxima on the Way to the Conical Intersections:

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Maximum on Path to CI: E*↔ER* Optimized TURBOMOLE			Maximum on Path to CI: MK*↔MKR1* Optimized TURBOMOLE					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ma	ximum on Optir 5.847183 5.10572 0.022556 9.37467 2.20728 .706840 1.81534 5.79423 9.30840 .738521 .709062 8.814108 6.677118 .806548 .375041 .459783 6.637835 .730889 .386876 .573119 .798227 .136492 .312490 .071783 .20227	Path to CI: E mized TURBOMOLH 1.025810 0.867546 -0.433868 -1.521824 -1.348366 -0.068728 2.019314 -2.505339 -2.194837 0.067983 1.938813 1.630124 -0.623983 0.391938 -1.632960 0.216062 1.317352 1.218126 -0.003079 -1.089193 -0.993054 2.242882 2.083887 -2.010192	*→ER* -1.159018 -0.770196 -0.380495 -0.414545 -0.812364 -1.187978 -1.440834 -0.118782 -0.830969 -1.499945 -0.758756 -0.420132 0.034276 0.107193 0.330814 0.109910 0.550734 0.193785 -0.235054 -0.284077 0.779106 0.849638 -0.524447 0.52447 0.524447 0.52447 0.55756 0.52447 0.55756 0.55756 0.55756 0.55756 0.55756 0.55756 0.55756 0.55756 0.55	666661111867166666611117	Maxim	um on P Optim 547266 190772 909966 918892 235878 533327 756086 698450 004582 543797 292073 572199 585884 388639 225857 373771 964056 500322 5001589 724918 763255 522707 998527 365096	ath to CI: MK ized TURBOMOL 1.118134 0.864440 -0.465915 -1.412034 -1.121738 0.144410 2.106518 -2.400173 -1.883030 0.367517 1.751879 -0.809692 0.029385 -1.805956 -0.127507 0.965636 0.888274 -0.293450 -1.390593 -1.315030 1.881463 1.727984 -2.299650 -2.178860	*MKR1* E 2.868515 2.442578 1.909679 1.833208 2.262060 2.775957 3.264319 1.435064 2.188330 3.105479 2.527611 1.458772 1.512301 1.064148 1.120463 1.311797 0.953278 0.363443 0.185959 0.556337 1.752351 1.144960 -0.254348 0.398713 2.0002020
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.389337 .741096 .619587 .026040 .963270 .324835 .797662 .912926 .527791 .592148 .027299 .865696 .256633 .315117 .701156 .762799	-1.829779 -0.212664 0.658201 0.384106 1.317158 1.064706 -0.145438 -1.089132 -0.848055 2.247420 1.794471 -0.341757 -2.025762 1.607617 -1.768995 -1.406508	-0.641510 0.220801 0.684959 0.633061 1.133669 1.092512 0.542226 0.041027 0.074004 1.557110 1.483029 0.510768 -0.385773 1.133486 -0.413097 -0.290571	7 6 6 6 6 6 1 1 1 1 8 1 1	2. 3. 4. 5. 7. 6. 5. 5. 7. 8. 7. 8. 7. 4. 8. 7. 2. 3. 2. 4. 8. 7. 2. 3. 2. 4. 8. 7. 2. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	797066 645025 992187 357032 171528 687411 379188 548270 451418 805166 719856 261999 281350 801137 395115 387785	-0.451539 0.598594 0.543060 1.669652 1.630153 0.451845 -0.679688 -0.658524 2.576574 2.506230 0.416366 -1.600393 1.551516 -1.769061 -1.545127 0.947692	-0.008286 -0.108216 0.313803 0.179253 0.606703 1.177224 1.309698 0.887062 -0.264198 0.500212 1.513215 1.739388 -0.511499 1.016153 0.641120 1.909145

Maximum on Path to CI: MK+MKR2				Maximum on Path to CI: DK+DKR1				
	Optimized TURBOMOLE				Optim	IZEG TURBOMOLI	1 <u>.</u>	
<i>.</i>		1 000500	0 0105.00	6			4 055005	
6.	-6.856957	1.200733	-0.313568	6	6.9	47659	1.075287	0.410787
6.	-5.486904	0.860423	-0.482509	6	5.5	50388	0.807804	0.522293
6.	-5.123368	-0.526092	-0.207709	6	5.1	12803	-0.529071	0.131072
6.	-6.044059	-1.376439	0.350288	6	5.9	96658	-1.394960	-0.470390
6 .	-7.422516	-1.006687	0.494486	6	7.3	89057	-1.087240	-0.582036
6 .	-7.810671	0.267125	0.142472	6	7.8	45949	0.133070	-0.120767
1 .	-7.158325	2.196393	-0.624830	1	7.2	96838	2.031859	0.786804
1 .	-5.734010	-2.369455	0.667257	1	5.6	39353	-2.348305	-0.853395
1 .	-8.141400	-1.743414	0.837598	1	8.0	68832	-1.823626	-0.997093
1 .	-8.851409	0.568023	0.227147	1	8.9	01935	0.380794	-0.183793
8 .	-4.576144	1.707401	-0.803384	8	4.6	595739	1.682917	0.895871
6 .	-3.689737	-0.878142	-0.346204	6	3.6	81162	-0.843404	0.259234
7.	-2.819321	0.016521	0.096529	7	2.8	03679	0.101167	-0.002765
1 .	-3.331409	-1.716534	-0.940392	1	3.3	26237	-1.824941	0.560266
6 ·	-1.429741	-0.081507	0.131034	6	1.4	08466	0.022597	-0.035870
6 ·	-0.667003	1.101955	0.176282	6	0.6	62806	1.204113	0.133685
6	0.715386	1.044013	0.188121	6	-0.7	19737	1.173043	0.129846
6	1.388752	-0.200946	0.153903	6	-1.4	07726	-0.052720	-0.047509
6	0.609807	-1.377013	0.158409	6	-0.6	48039	-1.231031	-0.238811
6 .	-0.774298	-1.329395	0.138414	6	0.7	33181	-1.200943	-0.234649
1 .	-1.174897	2.063068	0.194602	1	1.1	82205	2.146893	0.286145
1	1.280264	1.968462	0.253152	1	-1.2	66339	2.099322	0.265511
1	1.124550	-2.332851	0.173157	1	-1.1	69089	-2.169809	-0.402889
1 .	-1.350978	-2.248327	0.168544	1	1.2	89501	-2.114393	-0.419523
7	2.774046	-0.352962	0.158273	7	-2.7	82446	-0.163214	-0.057468
6	3.586735	0.594032	-0.213454	6	-3.7	11308	0.800227	0.089068
6	5.021436	0.441737	-0.151115	6	-5.0	76818	0.492903	0.050326
6	5.862624	1.493738	-0.574587	6	-6.0	54493	1.521416	0.207611
6	7.242809	1.377945	-0.527660	6	-7.3	96746	1.237215	0.174762
6	7.814398	0.186899	-0.049795	6	-7.8	22815	-0.108185	-0.019639
6	7.016741	-0.869810	0.372973	6	-6.9	22288	-1.134761	-0.176508
6	5.618053	-0.762221	0.329834	6	-5.5	03687	-0.900237	-0.151990
1	5.402700	2.408933	-0.941629	1	-5.7	11327	2.544156	0.355422
1	7.875020	2.196864	-0.855984	1	-8.1	32346	2.026551	0.295205
1	8.895747	0.086169	-0.009509	1	-8.8	88762	-0.324072	-0.043997
1	7.447522	-1.794828	0.742561	1	-7.2	46216	-2.160341	-0.324959
1	3.214475	1.545908	-0.611104	1	-3.3	83625	1.825558	0.240218
8	4.876610	-1.800092	0.741216	8	-4.6	60776	-1.844504	-0.296634
1	3.920230	-1.534312	0.628240	1	3.2	47742	1.046762	0.059621
1 .	-3.244759	0.974682	0.128941	1	-3.2	75607	-1.097900	-0.193061
E(S1)		-1031.0118258	6 E _h	Ε	(S1)		-1031.004372	35 E _h

Figure S1. Normalized stationary absorption (1-10^{-A}, where A is absorbance, dotted line) and emission spectra of BSP in DCM upon excitation at indicated wavelength (solid lines). The solid blue line shows the fluorescence excitation spectrum measured for 560 nm observation wavelength and normalized to the absorption spectrum.

Table S1.

Time constants and their fractional amplitudes (in parentheses, normalized to 100 %) obtained from exponential functions fits to the fs-transients (convoluted with an IRF of 210 fs) at the indicated emission wavelengths of BSP in HEX and upon excitation at 370 nm.

Wavelength / nm	τ_1 / fs	τ_2 / ps	τ_3 / ps
455	80 (100%)		
535	130 (68%)		20 (32%)
550	100 (31%)	2.8 (14%)	23 (55%)
600		1.0 (23%)	21 (77%)
650		2.4 (30%)	25 (70%)

Table S2.

Time constants and their fractional amplitudes (in parentheses, normalized to 100 %) obtained from exponential functions fits to the fs-transients (convoluted with an IRF of 220 fs) at the indicated emission wavelengths of BSP in DCM and upon excitation at 375 nm.

Wavelength / nm	τ_1 / fs	τ_2 / ps	τ_3 / ps
455	50 (100%)		
490	50 (88%)	1.8 (9%)	20 (3%)
550	50 (26%)	0.7 (12 %)	20 (62%)
600	-	1.0 (15%)	19 (85%)
650	-	3.1 (23%)	20 (77%)

Figure S2. Femtosecond (fs) emission transients of BSP in HEX on shorter (A) and longer (B) time scale at the indicated, representative wavelengths of observation, and upon excitation at 370 nm. The solid lines are from the best fit (see Table S1), and the dotted one is of IRF (FWHM=210 fs) measured at the Raman emission at 415 nm.

Figure S3. Femtosecond (fs) emission transients of BSP in DCM on shorter (A) and longer (B) time scale at the indicated wavelengths of observation, and upon excitation at 375 nm. The solid lines are from the best fit (see Table 1), and the dotted one is of IRF (FWHM=220 fs) measured at the Raman emission at 422 nm.

Figure S4. Temporal changes in the absorbance measured at 370 nm at the stationary absorption setup after the irradiation of the BSP/HEX with 410 nm, 3 mJ nanosecond pulses for 4 minutes at 10 Hz (open black squares). The time between the end of the irradiation and the beginning of the kinetics measurements is about 25 s. The solid line shows the fit with 1-exp rise and the characteristic time of 45 s. For the reference, the irradiation experiment with the same conditions was performed, but with the excitation far away from the absorption band of BSP (at 550 nm, open red circles), showing no changes in the absorbance.