Electronic Supplementary Information:

Ionic liquid and oligomer electrolytes based on the B(CN)₄⁻ anion; Ion association, physical and electrochemical properties.

Johan Scheers,*^{*a*} Jagath Pitawala,^{*a*} Frederic Thebault,^{*a*} Jae-Kwang Kim,^{*a*} Jou-Hyeon Ahn,^{*b*} Aleksandar Matic^{*a*}, Patrik Johansson^{*a,c*} and Per Jacobsson^{*a*}

^aDepartment of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.

^b Department of Chemical and Biological Engineering, Engineering Research Institute , Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, Republic of Korea

^cALISTORE - European Research Institute

*Corresponding author. Tel.: +46 31 772 3177; fax: +46 31 772 2090. E-mail address: johan.scheers@chalmers.se

Figure S1. Raman spectra of C_2 mimBison, C_4 mpyrBison and twenty IL linear combinations (top), and Raman spectra of three IL mixtures (4:1, 1:1, and 1:4; by volume) and the best fits of linearly combined spectra of the neat ILs (bottom).

Figure S2. Raman spectroscopy results ($v_s(BF)$) from a 1M LiBF₄:C₂mimBF₄ electrolyte with reference to the LiBF₄ salt (top) and C₂mimBF₄ ionic liquid (bottom).

TABLE S1. Ionic conductivity and glass transition temperatures of C₄mpyrBison, C₂mimBison, and their mixtures.

C ₄ mpyr ⁺ : C ₂ mim ⁺	$\sigma_{20^\circ\text{C}}$ / mS cm $^{\text{-1}}$	T _g /°C
1:0	3.43	-
9:1	5.22	-
4:1	4.65	-80
1:1	8.14	-78
1:4	10.63	-77
0:1	18.03	-76

	Li ⁺ Bison			Li ⁺ BF ₄ -			
Model:	HF/6-31G(d)	MP2/6-31G(d)	B3LYP/6-311+G(d)	HF/6-31G(d)	MP2/6-31G(d)	B3LYP/6-311+G(d)	
		mono/bi/tridentate			mono/bi/tridentat	e	
VACUUM	447/ 483 /443	452/ 508 /486	446/ 479 /438	564′/ 646 /636	582′/676/676	535 ['] / 602 /592	
CHN (ε=2.0)	220 ′/212/220′	226 ['] / 234 /207 [']	217 ′/203/–	287′/ 334 /316	303'/ 360 '/351	260 ['] / 293 /275 [']	
THF (ε=7.4)	69 ′/51/49	75 /57 [′] /57	65 /42/41′	100 [′] / 120 /97 [′]	113′/ 143 /129	76/ 84 /63'	
ACN (ε=36)	28 /16/16	34 /22/22	23/9/9'	47/ 59 /36 [′]	59/ 82 /65 [′]	25/ 26 ′/-	
H ₂ O (ε=78)	22 /12/17	-/18/18	17/5/4	39/51/-	51/ 73 /56 [′]	17′/ 18 ′/–	

TABLE S2. Dissociation energies for mono-, bi-, and tridentate ion pair configurations of LiBison and LiBF₄, as a function of computational models, and ion pair surrounding. The most stable energy for each combination is highlighted in bold.

One or several imaginary vibrational modes. All energies are reported in kJ mol⁻¹.

TABLE S3.	Dissociation	energies for 1	nono-, bi-, a	and tridentate	ion pair	configuration	s of NaBison	and KBison.
-----------	--------------	----------------	---------------	----------------	----------	---------------	--------------	-------------

	Na ⁺ Bison			K ⁺ Bison		
Model:	HF/6-31G(d)	MP2/6-31G(d)	B3LYP/6-311+G(d)	HF/6-31G(d)	MP2/6-31G(d)	B3LYP/6-311+G(d)
		mono/bi/tridentate			mono/bi/tridentat	e
VACUUM	381/ 421 /404	387/ 442 /441	376/ 411 /394	326'/ 363 /358	336/384/ 388	326′/ 360 /353
ACN (ε=36)	26 /16/16	32 '/22/22	22 ′/9/9	22 ′/15′/15	30' /25/21	19′ /8/8

One or several imaginary vibrational modes. All energies are reported in kJ mol⁻¹.

TABLE S4. 1	Dissociation	energies (E _d)	for fo	ur-coordinate	d Li ⁺ , Na ⁺ ,	and K^+	models.

	E _d / kJ mol ⁻¹					
Structure:	HF/6-31G(d)	MP2/6-31G(d)	B3LYP/6-311+G(d)			
Li(BF ₄) ₄ ³⁻	341	399	261			
Li(Bison)4 ³⁻	404	454	382			
Na(Bison) ₄ ³⁻	322	359	298			
K(Bison) ₄ ³⁻	243	279	223			