SUPPORTING INFORMATIONS

for

A computational investigation on singlet and triplet exciton couplings in

acenes molecular crystals

Claudio Quarti^a, Daniele Fazzi^{b*} and Mirella Del Zoppo^a

a. Dipartimento di Chimica, Materiali e Ing. Chimica CMIC "G. Natta", Politecnico di Milano, p.za Leonardo da Vinci 32,

20133, Milano and INSTM Udr Milano

b. Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133

Milano

Corresponding author: daniele.fazzi@iit.it

List of contents:

- Exciton couplings of the most interacting dimers, by using the IEFPCM method (Table SI1)
- TD-DFT Singlet and triplet excitation energies of BPEA evaluated with different functionals (Table SI2).
- Atom numbering of anthracene, tetracene, DPA and BPEA (Fig. SI1).
- Unit cells of anthracene, tetracene, DPA and BPEA (Fig. SI2 SI5).
- Molecular dimers found in the experimental crystal structures (Fig. SI6 SI9).
- TDDFT exciton couplings evaluated with the PDA (Table SI3)
- Transition density matrix projections for singlet excited states evaluated at ZINDO/S level (Table SI4 SI7).
- Properties of the singlet excited states of the molecular dimers evaluated at TD-B3LYP/6-31G**: excitation energies, oscillator strength, molecular orbitals involved in the main transitions, TD-DFT eigenvector of the main transitions (Table SI7 SI10).
- High density planes for anthracene, tetracene and BPEA (Fig. SI10 SI12).
- Singlets excited states of the molecular dimers evaluated with TD-B3LYP/6-31G** (Fig. SI13);

- Singlet excited states evaluated with TD-CAM-B3LYP/6-31G** (Fig. SI14).
- Triplet excited states of the molecular dimers evaluated with TD-B3LYP/6-31G** (Fig. SI15)
- Triplet excited states evaluated with TD-CAM-B3LYP/6-31G** (Fig. SI16).

Table SI1

Comparison between exciton couplings *V* for the most interacting dimers of compounds **1-4**, calculated at TD-B3LYP and TD-CAM-B3LYP/6-31G** level. Calculations have been carried out:

- in vacuo;
- in isotropic solvent ($\varepsilon = 3.5$) (IEFPCM calculations);
- anisotropic solvent ($\varepsilon_x = 4$, $\varepsilon_y = 2.5$) (IEFPCM calculations);

Compound and	$V_{\text{vacuum}} (\text{cm}^{-1})$	IEFPCM (cm ⁻¹)			
dimer	_	isotropic	anisotropic		
Centro-symmetric dir	ners		<u>.</u>		
Anthracene dimer B	256	250	258		
<i>Tetracene</i> dimer B1	134	139	133		
<i>BPEA</i> dimer A	221	111	299 (<i>x</i> direction) (298 <i>z</i> direction)		
Non-centro-symmetri	c dimers				
<i>Anthracene</i> dimer A	25	5	4		
<i>DPA</i> dimer D	96	83	101		
BPEA dimer F	215	141	272		

Table SI2

Excitation energies of the first singlet and triplet excited state of BPEA evaluated at TD-DFT with PBEPBE, B3LYP, PBE0, BHandH, CAM-B3LYP exchange-correlation functionals and 6-31G**, cc-pVTZ basis sets.

Functional	6-31G**	cc-pVTZ	experimental
T ₁ state excitation er	nergies (cm ⁻¹)		
PBEPBE	17410	17320	
B3LYP	19870	19570	

PBE1PBE	20510	20350	
BHANDH	23350	23070	
CAM-B3LYP	23160		21780
S ₁ state excitation	energies (cm ⁻¹⁾		
PBEPBE	9998	10228	
B3LYP	10057	10165	
PBE1PBE	9206	9570	
BHANDH	8417	9227	
CAM-B3LYP	8922		12480

Figure SI1: atom numbering of anthracene, tetracene, DPA and BPEA (see also Fig. 2 in the manuscript).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2011

Unit cell

Fig. SI4: DPA

Fig SI5: BPEA

MOLECULAR DIMERS

Fig. SI6: ANTHRACENE

DIMER A

DIMER B

DIMER C

DIMER D

H

Fig. SI7: TETRACENE

DIMER B

DIMER C

DIMER B1

DIMER C1

DIMER D1

Fig. SI8: DPA

Fig. SI9: BPEA

Table SI3: TD-B3LYP and TD-CAM-B3LYP/6-31G** exciton couplings $V(cm^{-1})$ evaluated with thePoint Dipole Approximation (PDA) method. In Table we report also the TDDFT exciton couplings asevaluated within the supramolecular approach.TD-B3LYP

PDA							
ANTHRACENE	te	tracene	DF	PA	BF	PEA	
A	41	А	424	А	282	А	16849
В	1088	A1	1226	В	740	В	740
С	198	В	629	С	36	С	799
D	119	B1	464	D	91	D	1973
		С	113	E	444	F	2399
		C1	33				
		D	63				
		D1	23				
supramolecular ap	proach						
ANTHRACENE		tetracene		DPA		BPEA	
A	121	А		А	29	А	754
В	157	A1	369	В	313	В	165
С	12	В	8	С	48	С	291
D	15	B1	107	D	80	D	255
		С	247	E	265	F	212
		C1	232				
		D	113				
		D1	80				

TD-CAM-B3LYP

PDA							
ANTHRACEN	E	tetracene		DPA		BPEA	
Α	54	А	576	А	299	А	16572
B	1470	A1	1686	В	624	В	734
С	268	В	797	С	114	С	793
D	161	B1	646	D	97	D	1971
		С	152	Е	446	F	2314
		C1	47				
		D	78				
		D1	33				
supramolecula	ar approach						
ANTHRACEN	E	tetracene		DPA		BPEA	
A	29	А		А	23	А	221
В	256	A1		В	50	В	160
С	27	В	13	С	61	С	231
D	21	B1	134	D	96	D	262
		С	83	E	25	F	215
		C1					
		D	25				
		D1	2				

TRANSITION DENSITY MATRIX (TDM) PROJECTIONS

The coefficients of the projection of the transition density matrices, evaluated at ZINDO/S level, are reported (for further details on the method see also ref 48 in the manuscript).

	(a ab)				(h ah)			
	(a,a0)				(0,00)			
	S1	S2	S3	S4	S1	S2	S3	S4
Dimer A								
S1	-0.65	0.00	0.00	-0.03	0.76	0.01	0.00	0.00
S2	-0.76	-0.01	0.00	0.03	-0.64	0.01	0.01	0.01
Dimer B								
S1	-0.71	-0.01	0.00	0.00	-0.70	-0.01	0.00	0.00
S2	-0.71	0.01	0.00	0.01	0.71	-0.01	0.00	0.01
Dimer C								
S1	0.79	0.00	0.00	0.00	-0.61	0.01	0.00	0.02
S2	0.61	0.00	-0.01	-0.01	0.79	0.02	0.00	0.01
Dimer D								
S1	-0.71	0.00	0.00	0.00	0.71	0.00	0.00	0.00
S2	-0.71	0.00	0.00	0.00	-0.71	0.00	0.00	0.00

Table SI4: ANTHRACENE

Table SI5: TETRACENE

	(a,ab)				(b,ab)			
	S1	S2	S3	S4	S1	S2	S3	S4
Dimer A								
S1	-0.14	0.01	0.01	0.00	-0.99	0.00	0.00	0.00
S2	-0.98	-0.01	0.00	0.00	0.13	0.02	0.02	-0.01
Dimer A1								
S1	-0.25	0.00	0.00	0.00	-0.96	0.00	0.00	0.00
S2	-0.96	0.00	0.00	0.01	0.25	0.00	0.00	0.00
Dimer B								
S1	-0.70	-0.01	-0.02	0.00	0.70	0.01	-0.02	0.00
S2	0.70	-0.01	-0.02	-0.01	0.70	-0.01	0.02	0.01
Dimer B1								
S1	-0.71	-0.01	0.01	0.00	-0.71	-0.01	-0.01	0.00
S2	0.71	-0.01	0.01	0.00	-0.71	0.01	0.01	0.00
Dimer C								
S1	0.05	0.00	0.00	0.00	-1.00	0.00	0.00	0.00
S2	1.00	0.00	0.00	0.00	0.05	0.02	0.00	0.00
Dimer C1								
S1	0.05	0.00	0.00	0.00	-1.00	0.00	0.00	0.00
S2	1.00	0.00	0.00	0.00	0.02	-0.01	0.00	0.00
Dimer D								
S1	0.71	0.00	0.00	0.00	0.71	0.00	0.00	0.00
S2	0.71	0.00	0.00	0.00	-0.71	0.00	0.00	0.00
Dimer D1								
S1	0.70	0.00	0.00	0.00	0.72	0.00	0.00	0.00
S2	0.72	0.00	0.00	0.00	-0.70	0.00	0.00	0.00

TABLE SI6: DPA

NOTE: the low lying dipole allowed excited states of the isolated DPA molecule, based on the experimental X-ray structure, is the S2 state.

	(a,ab)				(b,ab)			
	S1	S2	S3	S4	S1	S2	S3	S4
Dimer A								
S1	0.71	0.00	0.00	-0.01	0.71	0.00	0.00	-0.01
S2	-0.71	0.00	0.00	0.00	0.71	0.00	0.00	0.00
S3	0.00	0.71	0.00	0.00	0.00	-0.71	0.00	0.00
S4	0.00	-0.71	0.00	0.01	0.00	-0.71	0.00	0.01
Dimer B								
S1	0.70	0.04	0.00	0.00	-0.71	-0.04	0.00	0.00
S2	0.71	-0.03	0.00	0.00	0.71	-0.03	0.00	0.00
S3	0.04	-0.70	0.00	-0.01	-0.04	0.71	0.00	0.01
S4	0.03	0.71	0.00	-0.02	0.03	0.70	0.00	-0.02
Dimer C								
S1	-0.71	-0.03	0.00	0.00	-0.71	-0.03	0.00	0.00
S2	-0.71	0.03	0.00	0.00	0.71	-0.03	0.00	0.00
S3	0.03	-0.71	0.00	-0.01	0.03	-0.71	0.00	-0.01
S4	0.03	0.71	0.00	-0.01	-0.03	-0.71	0.00	0.01
Dimer D								
S1	-0.54	-0.03	0.00	0.00	-0.84	-0.03	0.00	0.00
S2	-0.84	0.02	0.00	0.00	0.54	-0.03	0.00	0.01
S3	0.03	-0.70	0.00	0.00	0.03	-0.71	0.00	0.00
S4	-0.02	-0.71	0.00	0.00	0.02	0.70	0.00	0.00
Dimer E								
S1	-0.75	0.01	0.00	0.00	-0.66	0.01	0.00	0.00
S2	-0.66	-0.01	0.00	0.00	0.75	0.01	0.00	0.00
S3	-0.01	-0.71	0.00	0.01	-0.01	-0.70	0.00	-0.01
S4	0.01	-0.70	0.00	-0.01	-0.01	0.71	0.00	-0.01

Table SI7: BPEA

	(a,ab)				(b,ab)			
	S1	S2	S3	S4	S1	S2	S3	S4
Dimer A								
S1	-0.70	0.00	0.00	0.00	0.70	0.00	0.00	0.00
S2	0.68	-0.01	0.00	0.00	0.68	-0.01	0.00	0.00
Dimer B								
S1	0.71	0.00	0.00	0.00	0.71	0.00	0.00	0.00
S2	-0.71	0.00	0.00	0.00	0.71	0.00	0.00	0.00
Dimer C								
S1	0.71	0.00	0.00	0.00	0.71	0.00	0.00	0.00
S2	0.71	0.00	0.00	0.00	-0.71	0.00	0.00	0.00
Dimer D								
S1	-0.72	0.00	0.00	0.00	-0.69	0.00	0.00	0.00
S2	0.69	0.00	0.00	0.00	-0.72	0.00	0.00	0.00
Dimer F								
S1	-0.71	0.00	0.00	0.00	0.71	0.00	0.00	0.00
S2	-0.71	0.01	0.00	0.00	-0.71	0.01	0.00	0.00

Properties of the singlet excited states of the dimers evaluated at B3LYP/6-31G level:** excitation energies, oscillator strength, molecular orbitals involved and TD-DFT eigenvectors are reported.

Table SI8: ANTHRACENE

State	energy (eV)	f	or	bitals	ľ	MO coefficients
Dimer A						
S1	2.70)91	0.0041	Н	L	0.70
S2	3.20)87	0.0465	H-1	L	0.63
				H-1	L+1	0.14
S3	3.23	887	0.0626	Н	L	0.64
S4	3.41	.94	0.0084	H-1	L+1	0.69
Dimer B						
S1	3.07	756	0.0548	H-1	L+1	0.23
				Н	L	0.65
S2	3.11	46	0.0000	H-1	L	0.50
				Н	L+1	0.50
S3	3.26	523	0.0000	H-1	L	0.45
				Н	L+1	-0.44
S4	3.26	541	0.1029	H-1	L+1	0.63
				Н	L	-0.17
Dimer C						
S1	3.16	69	0.0026	Н	L	0.70
S2	3.24	33	0.0342	H-1	L	0.60
				Н	L+1	-0.22
S3	3.24	63	0.0834	H-1	L	0.22
				Н	L+1	0.60
S4	3.31	.71	0.0031	H-1	L+1	0.70
Dimer D						
S1	3.24	04	0.0000	H-1	L	0.47
				Н	L+1	0.43
S2	3.24	43	0.1166	H-1	L+1	0.43
				Н	L	0.47
S3	3.27	28	0.0000	H-1	L	-0.48
				Н	L+1	0.52
S4	3.27	29	0.0003	H-1	L+1	0.52
				Н	L	-0.48

Table SI9: TETRACENE

state	energy (eV)	f	orl	oitals		MO coefficients
Dimer A						
S1	1.8146	5	0.0056	Н	L	0.70
S2	2.3760)	0.0600	H-1	L+1	-0.11
S3	2.4362	2	0.0443	H-1	L	0.61
				H-1	L+1	-0.17
S4	2.6299)	0.0210	H-1	L	0.14
				H-1	L+1	0.67
Dimer A1						
S1	1.8374	1	0.0060	Н	L	0.7
S2	2.3484	1	0.0343	H-1	L	0.61
				H-1	L+1	0.13
S 3	2.473	7	0.0737	Н	L+1	0.62
S4	2.5979)	0.0082	H-1	L+1	0.69
Dimer B						
S1	2.2990	5	0.0000	H-1	L	0.58
				Н	L+1	0.4
S2	2.3000)	0.0144	H-1	L+1	0.39
				Н	L	0.58
S3	2.4774	1	0.0000	H-1	L	-0.33
				Н	L+1	0.54
S4	2.4794	1	0.1549	H-1	L+1	0.54
Dimer B1				Н	L	-0.32
S1	2.2100	6	0.0000	L-1	H+1	-0.44
				Н	L	0.55
S2	2.2134	1	0.0007	H-1	L	0.52
				Н	L+1	-0.48
S3	2.3740	5	0.1215	H-1	L	0.42
				Н	L+1	0.46
S4	2.401	1	0.0000	H-1	L+1	0.5
				Н	L	0.37
Dimer C						
S1	2.3863	3	0.0183	H-1	L	-0.12
				Н	L	0.67
S2	2.395	7	0.0414	H-1	L	0.64
S3	2.4788	3	0.0906	H-1	L+1	-0.17
				Н	L+1	0.61
S4	2.4918	3	0.0160	H-1	L	0.65

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2011

			Н	L+1	0.24
Dimer C1					
S1	2.3922	0.0512	Н	L	0.6
			Н	L+1	0.19
S2	2.4163	0.0037	Н	L	-0.26
			Н	L+1	0.65
S3	2.4710	0.0904	H-1	L	0.52
			H-1	L+1	-0.36
S4	2.4954	0.0068	H-1	L	0.44
			H-1	L+1	0.55
Dimer D					
S1	2.4736	0.1956	H-1	L	0.5
			Н	L+1	-0.37
S2	2.4775	0.0000	H-1	L+1	-0.31
			Н	L	0.55
S3	2.5008	0.0032	H-1	L	0.44
			Н	L+1	0.55
S4	2.5017	0.0000	H-1	L+1	0.59
			Н	L	0.38
Dimer D1					
S1	2.3895	0.0018	H-1	L+1	0.4
			Н	L	0.46
S2	2.3898	0.1107	H-1	L	0.43
			Н	L+1	0.44
S3	2.4092	0.0000	H-1	L	0.5
			Н	L+1	-0.5
S4	2.4092	0.0000	H-1	L+1	0.52
			Н	L	-0.47

Table SI10: DPA

state	energy (eV)	f		orbitals		MO coefficients
Dimer A						
S1	3.5913		0.0000	H-1	L+1	-0.33
				Н	L	0.56
S2	3.5984		0.2777	H-1	L	0.55
				Н	L+1	-0.34
S3	3.7193		0.0128	H-1	L	0.39
				Н	L+1	0.58

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2011

S4	3.7207	0.0000	H-1	L+1	0.59
			Н	L	0.38
Dimer B					
S1	3.5965	0.0000	H-1	L	-0.25
			Н	L+1	0.60
S2	3.6743	0.0000	H-1	L	0.63
			Н	L+1	0.31
S3	3.6743	0.0000	H-1	L	0.63
			Н	L+1	0.31
S4	3.6859	0.0533	H-1	L+1	0.65
			Н	L	0.24
Dimer C					
S 1	3.5921	0.0000	H-1	L+1	0.41
			Н	L	0.50
S2	3.6041	0.2800	H-1	L	0.46
			Н	L+1	0.45
S3	3.6806	0.0002	H-1	L	-0.50
			Н	L+1	0.50
S4	3.6811	0.0000	H-1	L+1	0.54
			Н	L	-0.46
Dimer D					
S 1	3.5967	0.1121	H-1	L+1	0.45
			Н	L	0.47
S2	3.6166	0.1938	H-1	L	0.46
			Н	L+1	0.45
S3	3.6754	0.0000	H-1	L	-0.5
			Н	L+1	0.5
S4	3.6754	0.0001	H-1	L+1	0.51
			Н	L	-0.49
Dimer E					
S1	3.5916	0.0829	H-1	L	0.26
			Н	L+1	0.6
S2	3.5951	0.1533	H-1	L+1	0.19
			Н	L	0.63
S3	3.6521	0.0079	H-1	L	0.62
			Н	L+1	-0.31
S4	3.6573	0.0363	H-1	L+1	0.65
			Н	L	-0.25

Table SI11: BPEA

state	energy (eV)	f	0	orbitals		MO coefficients	
Dimer A							
S1	2.203	3	0.1778	H-1	L+1	-0.29	
				Н	L	0.63	
S2	2.242	1	0.0000	H-1	L	0.61	
				Н	L+1	-0.34	
S3	2.472	0	0.0000	H-1	L	0.28	
				Н	L+1	0.57	
S4	2.658	9	1.1059	H-1	L+1	0.60	
Dimer B				Н	L	0.21	
S1	2.527	0	1.7293	H-1	L	0.44	
				Н	L+1	0.44	
82	2.562	8	0.0000	H-1	L+1	-0.47	
				Н	L	0.53	
S3	2.562	9	0.0000	H-1	L	-0.50	
				Н	L+1	0.50	
S4	2.567	8	0.0000	H-1	L+1	0.47	
				Н	L	0.40	
Dimer C							
S1	2.502	0	1.5596	H-1	L+1	-0.19	
				Н	L	0.61	
S2	2.559	4	0.0000	H-1	L	0.55	
				Н	L+1	0.44	
S3	2.573	2	0.2613	H-1	L+1	0.64	
				Н	L	0.26	
S4	2.574	1	0.0000	H-1	L	-0.37	
				Н	L+1	0.50	
Dimer D							
S1	2.356	5	0.0029	Н	L	0.71	
S2	2.510	3	1.6951	H-1	L	0.45	
				Н	L+1	0.43	
S3	2.573	6	0.0262	H-1	L	-0.43	
				Н	L+1	0.45	
S4	2.612	1	0.0035	H-1	L+1	0.71	
Dimer F							
S1	2.373	7	0.0002	H-1	L+1	-0.46	
				Н	L	0.53	
S2	2.374	4	0.0011	H-1	L	0.51	

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2011

			Н	L+1	-0.49
S3	2.5099	0.0384	H-1	L+1	0.48
			Н	L	0.40
S4	2.5626	1.4381	H-1	L	0.43
			Н	H+1	0.45

High density planes for anthracene, tetracene and BPEA molecular crystals

Fig. SI10: ANTHRACENE

Fig. SI11: TETRACENE

Fig. SI12: BPEA

Fig. SI13: TD-B3LYP/6-31G** SINGLET EXCITED STATES OF THE DIMERS

In the panels below reported (SI13-SI16) for each dimer and for each molecular crystal, we considered in the first column the excited state energies of molecule a, in the third column the excited states of molecule b while in the central (second) column the excited states of the dimer ab.

tetracene TD-B3LYP/6-31G**: singlet excited states (part 1)

DPA TD-B3LYP/6-31G**: singlet excited states

Fig. SI14: TD-CAM-B3LYP/6-31G** SINGLET EXCITED STATES

tetracene TD-CAM-B3LYP/6-31G**: singlet excited states (part 2)

BPEA TD-CAM-B3LYP/6-31G**: singlet excited states

Fig. SI15: TD-B3LYP/6-31G** TRIPLET EXCITED STATES

BPEA TD-B3LYP/6-31G**: triplet excited states

Fig. SI16: TD-CAM-B3LYP/6-31G** TRIPLET EXCITED STATES

BPEA TD-CAM-B3LYP/6-31G**: triplet excited states