
A Spectral line intensities

In the adiabatic approximation, the Hamiltonian of the ground electronic
state can be written as

Ĥg = − 1

2µr

∂2

∂r2
r +

N̂2

2µR2
+ V (r), (1)

where r is the interatomic distance, N is the rotational angular momentum,
µ is the reduced mass, and V (r) is the interaction potential. For simplicity,
we omit the hyperfine interactions, the spin-rotation interaction, and con-
sider the case of zero external magnetic field. We use Hund’s case (a) basis
functions

|JMΩ〉|ΛΣ〉 (2)

where J is the total angular momentum Ĵ = N̂ + L̂ + Ŝ, where L̂ is the
electronic orbital angular momentum and Σ is the electron spin. Λ and Σ
are the projections of L̂ and Ŝ onto the internuclear axis, and Ω = Λ + Σ.
For 2Σ electronic states, Λ = 0 and hence Ω = Σ. The most important term
in Eqn. (1) is the rotational kinetic energy, which can be written in Hund’s
case (a) as

Be(Ĵ − Ŝ)2 = Be(Ĵ
2 + Ŝ2 − 2ĴzŜz − Ĵ+Ŝ+ − Ĵ+Ŝ−) (3)

The cross terms Ĵ∓Ŝ± couple the states with different Σ, but J remains a
good quantum number. The eigenfunctions of the ground-state Hamiltonian
can therefore be written as linear combinations of basis functions of Eqn. (2)
with the same J but different Ω (Ω and Σ can be used interchangeably here)

|nJM〉 =

1/2∑
Ω=−1/2

aJΩ|JMΩ〉|Λ = 0,Ω〉 (4)

Eqn. (3) contains cross terms, which lead to large (of order Be) off-diagonal
matrix elements of Ĥg. Therefore, Hund’s case (a) scheme is not optimal for
describing rotational dynamics of 2Σ molecules. In fact, all 2Σ molecules fall
in Hund’s case (b) category since the absence of the first-order spin-orbit
interaction makes N a good quantum number. Hund’s case (b) rotational
basis functions have the form

|NJS〉, (5)

where N is the rotational angular momentum. In the absence of the spin-
rotation interaction (such as in our case), the Hamiltonian in basis (2) has

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011



only diagonal matrix elements, which are given by

〈NJS|Ĥg|NJS〉 = − 1

2µr

∂2

∂r2
r +

N(N + 1)

2µR2
+ V (r), (6)

where N is an integer number. Note that Σ is not defined in Hund’s case
(b). Numerical solution of Eqn. (6) gives ro-vibrational energies εvJ and
wave functions χvJ(r). Since these energies only depend on r, we can use
them to augment Eqn. (2). As a result, the full ro-vibrational eigenfunction
for the ground electronic state of AgHe takes the form

χvJ(r)|nJ〉 = χvJ(r)

1/2∑
Ω=−1/2

aJΩ|JMΩ〉|Λ = 0,Ω〉 (7)

The Hamiltonian for the excited 2Π3/2 state of AgHe may be written as

Ĥe = − 1

2µr

∂2

∂r2
r +

N̂2

2µR2
+ V (r) +HSO, (8)

where the additional term ĤSO represents the spin-orbit interaction

ĤSO = ASOL̂ · Ŝ =
ASO

2

[
Ĵ2
a − L̂2 − Ŝ2

]
, (9)

where Ĵa = L̂+Ŝ is the total angular momentum of the Ag atom exclusive of
nuclear spin, and ASO is related to the fine-structure splitting of the 2P term.
Since only the 2Π3/2 electronic state of AgHe has a non-negligible Franck-

Condon overlap with the ground state, we have Ja = 3
2 . The rotational

energy can be written as

Be(Ĵ − Ĵa)2 = Be(Ĵ
2 + Ĵ2

a − 2ĴzĴaz − Ĵ+Ĵa− − Ĵ−Ĵa+) (10)

The cross terms change the value of Ω - the projection of J and Ja onto the
internuclear axis. In our case, Ω = 3

2 . Fig. 1 shows that the other electronic
state of Ω = 1/2 symmetry is far apart in energy, so the cross terms have
a negligible effect. The Hamiltonian of Eqn. (8) is diagonal in Hund’s case
(c) basis [1, 2]

|JMΩ〉|JaΩ〉, (11)

where, as before, Ĵ = N̂+Ĵa is the total angular momentum with space-fixed
and molecule-fixed projections M and Ω. Note that when Ja = S (ground
electronic state), Hund’s case (a) with Λ = 0 is recovered. For evaluating
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transition probabilities, it is essential that the same representation be used
for both ground and excited states. This is the main reason why we used
case (a) basis for the ground electronic state, despite the fact that Hund’s
case (b) scheme offers more meaningful quantum numbers.

The effective Hamiltonian for Hund’s case (c) takes the form [1]

〈JMΩ|〈JΩ|Ĥg|JMΩ〉|JaΩ〉 =

− 1

2µr

∂2

∂r2
r +

J(J + 1) + Ja(Ja + 1)− 2Ω2

2µR2
+ VΩ(r), (12)

The energy levels εvJJaΩ and wave functions χvJJaΩ(r) are obtained by quan-
tizing the Hamiltonian of Eqn. (12) using the potential energy curve for the
2Π3/2 electronic state. The total ro-vibrational wave function may be writ-
ten

χvJJaΩ(r)|JMΩ〉|JaΩ〉. (13)

The probabilities for electric dipole transitions are given by [2, 3]

P (nvJ → v′J ′J ′aΩ′) ∝∑
M,M ′

|〈nJM |〈χvJ(r)|µZ(1, 0)|χvJJaΩ(r)〉|JMΩ〉|JaΩ〉|2, (14)

where µZ(1, 0) is the space-fixed transition dipole moment, which we trans-
form to the molecule-fixed frame

µZ(1, 0) =
∑
q

D1?
0qµ(1, q), (15)

where q denotes the molecule-frame component of µ and D1?
0q are the Wigner

D-functions. Substituting Eqn. (15) into Eqn. (14), factoring out the Franck-
Condon overlap, and evaluating the matrix element of three D-functions [3],
we find

P (nvJ → v′J ′J ′aΩ′) ∝ [(2J ′ + 1)(2J + 1)]〈χv′J ′J ′
aΩ′(r)|χvJ(r)〉2

×
∑
M,M ′

∣∣∣∣ 1/2∑
Ω=−1/2

aJΩ

(
J ′ 1 J
M ′ 0 −M

)(
J ′ 1 J
Ω′ Ω− Ω′ −Ω

)

× 〈J ′aΩ′|µ(1,Ω′ − Ω)|Λ = 0,Ω〉
∣∣∣∣2. (16)

3

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011



The sum over M and M ′ can be evaluated using the orthogonality properties
of 3-j symbols [3] to yield

P (nvJ → v′J ′J ′aΩ′) ∝ [(2J ′ + 1)(2J + 1)]〈χv′J ′J ′
aΩ′(r)|χvJ(r)〉2

×
∣∣∣∣ 1/2∑
Ω=−1/2

aJΩ

(
J ′ 1 J
Ω′ Ω− Ω′ −Ω

)
〈J ′aΩ′|µ(1,Ω′ − Ω)|Λ = 0,Ω〉

∣∣∣∣2. (17)

Since Ω′ = 3
2 , the Ω = −1/2 term in the sum in Eqn. (17) gives Ω′ − Ω = 2

which is forbidden because the dipole moment tensor has rank 1. Therefore,
the sum in Eqn. (17) collapses to a single term. In the absence of the
spin-rotation interaction, the coefficients aJΩ do not depend on J and can
therefore be omitted. As a result of these simplifications, we obtain

P (nvJ → v′J ′J ′aΩ′ = 3
2) ∝ [(2J ′ + 1)(2J + 1)]〈χv′J ′J ′

aΩ′(r)|χvJ(r)〉2

×
∣∣∣∣( J ′ 1 J

Ω′ Ω− Ω′ −Ω

)
〈J ′aΩ′|µ(1,Ω′ − Ω)|Λ = 0,Ω〉

∣∣∣∣2. (18)

Finally, we assume that the transition dipole matrix element of AgHe is the
same as that of Ag.
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