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1 Redfield theory for CSA relaxation

The Redfield theory [1] is a weakly-coupled, semi-classical, statistical density matrix formulation for the time evo-
lution of the nuclear magnetizationM = nγK h̄〈IK〉,1 wheren is the number density of nuclei,γK is the gyromagnetic
ratio, andIK is the dimensionless spin angular momentum operator of nucleusK. The NMR relaxation is caused
by the fluctuations in the NMR tensors, parameters of the NMR spin Hamiltonian. The relaxation part of the time
evolution of the componentε of IK is, within the Redfield theory, governed by

d〈Iε〉
dt

= ∑
αα ′ββ ′

Rαα ′ββ ′ρ(t)ββ ′(Iε)α ′α = −〈Iε〉− 〈Iε〉0

T
(1a)

Rαα ′ββ ′ = Jαβα ′β ′(ωα −ωβ )+ Jαβα ′β ′(ωα ′ −ωβ ′)−δαβ ∑
σ

Jσα ′σβ ′(ωσ −ωβ ′)−δα ′β ′ ∑
σ

Jσβσα (ωσ −ωβ ), (1b)

whereRαα ′ββ ′ is the Redfield matrix,α ,β label the nuclear spin Zeeman states, and〈Iε〉0 denotes a thermal equi-
librium value. In Eq. (1a), a connection is made with the phenomenological Bloch equations, [2] enabling the iden-
tification of longitudinal (T = T1,ε = Z) and transverse (T = T2,ε = X ,Y ;〈Iε〉0 = 0) relaxation times.J(ω) is the
Fourier transform of the time autocorrelation function (TCF) 〈Hαβ (0);Hβ ′α ′(t)〉, of the perturbing, time-dependent
NMR HamiltonianH(t):

Jαβα ′β ′(ω) =
1
2

∫ ∞

−∞
〈Hαβ (0);Hβ ′α ′(t)〉e−iωtdt. (2)

1We employ SI units throughout.

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011



In the context of NMR relaxation processes,H(t) is usually decomposed in terms of spherical tensor components

H(t) =
2

∑
l=0

l

∑
q=−l

(−1)qh(l,−q)(t)A
(l,q)

, (3)

wherel = 0,1,2 are the tensorial ranks of the time-dependent interactiontensorh(l,−q)(t) and time-independent spin
operatorA(l,q). In this approach, the SDF is written as

Jαβα ′β ′(ω) =
2

∑
l=0

l

∑
q=−l

j(l,−q)(ω)A(l,q)
αβ A(l,q)∗

α ′β ′ (4)

where the separation into spin-dependent and -independentterms is accomplished with the spectral density function
(SDF) j(ω) written as

j(l,−q)(ω) =

∫ ∞

0
〈h(l,−q)(0);h(l,−q)(t)〉cos(ωt)dt. (5)

Hence,j(ω) is the Fourier transform of TCF consisting only of the time-dependent part of the perturbation Hamilto-
nian.

The interaction of nuclear spin with the static external magnetic flux densityB0 can be written as

HK
NMR = − 1

2π
γK IK · [1−σK(t)] ·B0 ≡ hNZ + hCSA(t), (6)

whereσK is the nuclear shielding tensor. The unit tensor1 accounts for the Zeeman interaction (NZ) of the bare
nucleus. The Hamiltonian corresponding to shielding due tothe electron cloud,hCSA(t), is a small time-dependent
perturbation. Its time-dependence arises from interatomic collisions, cluster formation, and the rotation of clusters
with respect toB0. Due to the fact thathCSA(t) appears twice in the SDF in Eq. (5), the CSA relaxation exhibits a
built-in quadratic dependence on the external field.

The shielding tensor has a total of nine components, contributing to tensorial ranks 0, 1, and 2. The rank-0
part is a scalar corresponding to the shielding constant. Itshifts the Zeeman levels by a constant amount, and thus
is incapable of causing transitions between them. The rank-1 components cause the so-called antisymmetric (AS)
effect on relaxation, which is often neglected, [3] although there are indications that it plays an important role in CSA
relaxation in favorable conditions. [4, 5]

The most important, rank-2 part of the perturbation Hamiltonian (3) reduces to

H(t) =
2

∑
q=−2

(−1)qhCSA
(−q)(t)A

(q)
, (7)

where the labell = 2 is omitted for simplicity. The time-independent partsA(q) contain the external magnetic flux
density. With the choiceB0 = (0,0,B0) (external field along the CartesianZ-axis of the laboratory frame), these are
written as [6]

A(0) = 2B0IZ ; A(±1) = ∓
√

6
2

B0I± ; A(±2) = 0. (8)

The necessary spherical components of the cylindrically symmetric and traceless reduced rank-2 shielding tensor are,
consequently,

h(0) =
1
2

γKσZZ ; h(±1) =
1√
6

γK(∓σXZ − iσYZ), (9)

in terms of the Cartesian shielding tensor componentsσεκ (ε ,κ = X ,Y,Z) with i the imaginary unit. The final
perturbation Hamiltonian is thus

H(t) = B0

[

2h(0)IZ +

√
6

2
h(−1)I+ −

√
6

2
h(1)I−

]

, (10)
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which implies a calculation of three distinct TCFs corresponding to the shielding tensor componentsh(0), h(±1). The
overall TCF becomes (omitting constants)

TCF(t) ∝
1

∑
q=−1

〈h(q)(0);h(q)(t)〉 = 〈h(0)(0);h(0)(t)〉+2Re〈h(1)(0);h(1)(t)〉−2Im〈h(1)(0);h(1)(t)〉, (11)

since Re(h1) = –Re(h−1), and Im(h1) = –Im(h−1). The final shielding SDF used to calculate the CSA relaxationtimes
T1 is obtained by a Fourier transformation of Eq. (11), as

J (ω) = F{TCF(t)}, (12)

whereF is used to denote Fourier transformation.
In the present work dealing with the CSA relaxation of monoatomic 129Xe, the total shielding tensor for every

Xe atom at each time step is constructed from the cylindrically symmetric tensors formed in the local dimer coordinate
system. The dimer tensors are rotated to a common coordinatesystem, the laboratory frame, in which they are
summed. Due to the cylindrical symmetry of the pair tensors,the small AS contributions toσ cannot be contained in
the total PAA shielding tensor. Consequently, we assess theAS effect on the CSAT1 by a posteriori -formulae (vide
infra). [4]

2 Molecular dynamics simulations

The simulations were performed at the experimental number density and temperature points (n,T ) [7, 8, 9, 10] with
the GROMACS simulation package [11]. Velocity rescaling thermostat [12] and Berendsen [13] thermo-/barostat
were used inNV T andNPT simulations, in which conditions were prepared for the production runs. The density was
fixed by scaling the simulation box including 2000 atoms. Theminimum image convention was used in connection
with periodic boundary conditions. [14] After that,NVE production runs at the desired (n,T ) points were carried out.
The configurations were saved at each 1 fs time step of the 524.288 ps production runs, after an equilibration period of
300–500 ps. The total energy as well as temperature drifts were no greater than 0.3 kJ/mol and 2.2 K, respectively. The
drifts remain within the rms error limits. A fully theoretical pair potential for Xe-Xe, obtained by combining coupled-
cluster singles, doubles and perturbational triples [CCSD(T)] correlation treatment, scalar relativistic effects,bond
basis functions, and core-polarization contributions, [15] was used in the simulations. The switching function [11]
was used in the interatomic distance range of 1.95 – 2.15 nm, providing ana priori better choice than the simple
truncation of potential due to the singularity in the force that follows from the latter. At the distance of 2.15 nm,
the potential has a value of about 0.01% of its well depth. Forcomparison, we also employed the Aziz-Slaman
potential, [16] and both a textbook Lennard-Jones (LJ) potential [17] and a LJ potential fitted to our own theoretical
interaction potential. The fitting parametersε = 2.354 kJ/mol andσ = 0.391 nm were obtained for the latter.

3 Error sources

The rms error of the height of the plateau in the example case of 295 K and 99.8 amg (See Figure 1 in the article)
implies±5% error margins onT1. The total TCF is governed by theh20 spherical shielding component, since theh2±1

terms only contribute roughly 4% to the totalT1. Considering the statistical sampling over the xenon MD ensemble,
the change inT1 obtained between analyses of 200 and 2000 atoms (using only the h20 term) is comparable to the
error in the Lorentzian fit.

Despite the fact that PAA was found to be successful forσXe in Xe clusters, [18] the missing three-body and
higher-order terms introduce an error to the analysis of CSAT1. An estimate of the error due to PAA of the shielding
tensors can be obtained from the coefficient of the linear regression fit of the PAA shielding anisotropies (constructed
from the shielding anisotropy binary property surface) against quantum-chemically calculated shielding anisotropies
(proportional toh20) for the instantaneous clusters Xe3–Xe7 that occur in the present simulations. The differently
coordinated atoms correspond to different slopes in this fit. Moreover, the number of differently coordinated atoms
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is obtained from each simulated trajectory, which are used as weights of the slopes. Finally, a 5% error is obtained
in the 295 K, 99.8 amg trajectory. This error is doubled in theTCF, implying±10% error margins forT1 in this
representative case. The binary shielding anisotropy curve is exact for the coordination numberZ equal to unity, and
the error in PAA increases for higherZ. [18] Hence, PAA involving the binaryσXe(r) becomes an increasingly good
model at low densities.

The error estimate given for PAA is based on nonrelativisticHartree-Fock calculations of the shielding tensors
in the xenon clusters. This is due to the heavy computationalburden that would arise from the calibration of quantum-
chemical tensors for large clusters including the effects of electron correlation, relativity, and their coupling (see
Eq. (10) of Ref. [19]). A total of ten HF calculations were performed for each cluster Xei, i = 3 – 7. In this context,
the±10% error margins mentioned earlier should be considered asan order-of-magnitude estimate for theT1.

4 Antisymmetric terms in CSA relaxation

The antisymmetric (AS) rank-1 parts ofσ may contribute to CSA relaxation. [20] The AS parts are not included in
our method, which essentially is a superposition of rank-2σXe(r) functions. Using approximate formulae for theT AS

1
(Eq. (5) in Ref. [4]), ana posteriori estimate of 1012 s is obtained, [21] with the minimum and maximum of ca. 106 s
and 1014 s, respectively. The CSAT AS

1 is at least an order of magnitude larger than the rank-2T1 (Table 1 of the
article). Thus, the AS components do not contribute significantly in the present case.
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5 Figures and tables
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Figure 1: Temperature dependence of the calculated and experimental CSA relaxation times at three different number
densities of 33.9, 71.8, and 92.4 amg.
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Figure 2: Density dependence of the calculated coordination number distribution in gaseous xenon at 295 K. In
evaluating the coordination numbers we used the distance criterion of 6 Å corresponding to the first coordination
shell of the highest-density Xe(g) simulation. The number-of-cases weighted average of the coordination number is

obtained with〈Z〉= ∑k
Z=1 wZZ

∑k
Z=1 wZ

, wherek andwZ are the trajectory-specific highest occurringZ, and the number of atoms

belonging to specificZ, respectively.
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Figure 3: Simulated average coordination number〈Z〉 of xenon atoms as a function of the number density in xenon
gas at 295 K.
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Figure 4: Calculated and experimental chemical shift anisotropy (a) relaxation timesT1 and (b) relaxation ratesR1, of
xenon gas at 295 K as functions of the average coordination number.
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Figure 5: Calculated radial distribution functions (RDFs)of gaseous xenon (a-e) as functions of the number density
at 295 K. The liquid phase RDF corresponding to 180 K and 521.03 amg is also shown in (f), along with the average
coordination numbers.
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Table 1: The parametersk, b andR2 of the linear regression fity = kx + b for the experimental and the two theoretical
(n,R1) data sets in Figure 2 of the article.

method k (10−6 s−1/amg) b (10−5 s−1) R2

expt.a 2.48 0.91 0.947
calc. plateau fit 2.06 1.89 0.989
calc. monoexp. TCF 2.01 1.53 0.999

a Ref. [7].
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Table 2: Influence of the potential energy function and the physical content of the binary nuclear shielding tensor
parametrization on the calculated129Xe chemical shift anisotropy relaxation timeT1 in gaseous xenon at 295 K and
99.8 amg.

Potential Switcha T1 (s)b Binary shieldingc T1 (s)
Ownd on 4380 R, C, RCCe 4700f

off 4040 R, C 4680
Own (0.5 fs MD step) off 4120 R, NC 4630
LJg off 3010 NR, C 5870
Aziz-Slamanh on 4220 NR, NC 5690

a Whether the switching function is used to eliminate the potential truncation artefacts, on = switching function used,
off = no switching function.
b In all cases, the length of the shielding autocorrelation function is 524.288 ps with a time step of 1 fs, unless stated
otherwise. All relaxation times presented here are calculated based on the Lorentzian fit of the plateau in the
frequency domain, as explained in the footnotec of Table 1 in the article.
c R=relativistic, NR=nonrelativistic, C=correlated, NC=uncorrelated, RCC = including the coupling between
relativity and correlation. Switch function used along with our best potential, Ref. [15]. Exactly the same
microscopic positional data are used to calculate each of theseT1 values.
d Ref. [15]. Potential energy resulting from a counterpoise-corrected CCSD(T)/aug-cc-pVQZ/relativistic large-core
effective core potential calculation featuring core polarization corrections as well as bond basis functions.
e R, C, RCC: full Eq. (10) of Ref. [19]; R, C: Breit-Pauli perturbation theory coupling between relativity and
correlation omitted; R, NC: DHF shielding; NR, C: CCSD(T) shielding; NR, NC: HF shielding. These designations
refer to the inclusion/omission of terms in Eq. (10) of Ref. [19].
f The seeming discrepancy betweenT1 values of 4700 s and 4380 s (column 3 of the table) is due to the fact that they
correspond to different microscopic positional data underthe same experimental conditions. They reflect the error
margins (±680 s at the conditions of this table) involved in the theoretical evaluation ofT1.
g The potential of Ref. [15] fitted to the Lennard-Jones functional form.
h The empirical Aziz-Slaman potential. [16]
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Figure 6: Simulated (a) shielding time autocorrelation function (TCF) (length of the analyzed, extended trajectory
is 1048.576 ps), as well as the fitted mono- and biexponentialdecays and (b) the corresponding direct and two ana-
lytically Fourier-transformed spectral density functions (SDFs) of gaseous Xe at 1 amg and 295 K. The existence of
two dimer species that correspond to different relaxation rates is suggested. In (b), the vertical dotted lines depict the
129Xe Larmor frequenciesω0 ≈ 6.0×108 rad/s and 1.0×109 rad/s (B0 of 8.0 T and 14.1 T, respectively).

12

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011



References

[1] A. G. Redfield,IBM J. Res. Develop. 1957, 1, 19–31;Adv. Magn. Reson. 1965, 1, 1–32.

[2] F. Bloch,Phys. Rev. 1946, 70, 460–474.

[3] R. K. Harris,Nuclear Magnetic Resonance Spectroscopy, Longman, Harlow,1986.

[4] J. Kowalewski and L. Werbelow,J. Magn. Reson. 1997, 128, 144–148.

[5] R. Paquin, P. Pelupessy, L. Duma, C. Gervais, and G. Bodenhausen,J. Chem. Phys. 2010, 133, 034506.

[6] J. McConnell,Phys. A 1984, 127, 152–172.

[7] I. L. Moudrakovski, S. R. Breeze, B. Simard, C. I. Ratcliffe, J. A. Ripmeester, T. Seideman, J. S. Tse, and
G. Santyr,J. Chem. Phys. 2001, 114, 2173–2181.

[8] M. V. Romalis and M. P. Ledbetter,Phys. Rev. Lett. 2001, 87, 067601.

[9] B. N. Berry-Pusey, B. C. Anger, G. Laicher, and B. Saam,Phys. Rev. A 2006, 74, 063408.

[10] B. C. Anger, G. Schrank, A. Schoeck, K. A. Butler, M. S. Solum, R. J. Pugmire, and B. Saam,Phys. Rev. A
2008, 78, 043406.

[11] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl,J. Chem. Theory Comput. 2008, 4, 435–447.

[12] G. Bussi, D. Donadio, and M. Parrinello,J. Chem. Phys. 2007, 126, 014101.

[13] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak,J. Chem. Phys. 1984, 81,
3684–3690.

[14] M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids, Clarendon Press, Oxford,1987

[15] M. Hanni, P. Lantto, N. Runeberg, J. Jokisaari, and J. Vaara,J. Chem. Phys. 2004, 121, 5908–5919.

[16] R. A. Aziz and M. J. Slaman,Mol. Phys. 1986, 57, 825–840.

[17] P. Atkins and J. de Paula,Physical Chemistry, Oxford University Press,1996. The Xe-Xe Lennard-Jones param-
eters used areε = 1.779 kJ/mol andσ = 0.426 nm.

[18] M. Hanni, P. Lantto, and J. Vaara,Phys. Chem. Chem. Phys. 2009, 11, 2485–2496.
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