Table A-1 Multipole moments and static polarizabilities (in a.u.) of the FOX-7 monomer in
Cartesian form. Only low order moments are shown however contributions through
L=7 were used in computation of the asymptotic energies.

FOX-7 monomer coordinates in atomic units (center of mass at origin) corresponding to moments presented below :

С	-0.05429	0.02885	-0.04153
С	-2.44240	-0.86246	0.98948
N	0.41496	0.33671	-2.62400
N	2.00944	0.54773	1.61696
0	2.39533	1.40802	-3.35334
0	-1.22121	-0.36840	-4.17201
0	1.54626	1.41298	3.74813
0	4.21094	0.06732	0.95781
N	-4.28576	-1.60356	-0.51621
Н	-5.73892	-2.13239	0.10629
Н	-4.10208	-1.58619	-2.15189
N	-2.78399	-1.03253	3.46495
Н	-4.15580	-1.58619	4.02571
Н	-1.74212	-0.41929	4.49441

Dipole:

$\mu_z =$	1.431031459
$\mu_x =$	-3.232299188
$\mu_y =$	-1.200439329

Quadrupole:

$\Theta_{xx} =$	7.089181685
$\Theta_{yy} =$	-0.026275395
$\Theta_{zz} =$	-7.062906290
$\Theta_{xy} =$	4.461641208
$\Theta_{\rm xz} =$	-6.449349686

 $\Theta_{yz} = -2.396866480$

	Static p	olarizabilities	
Dipole-dipole:			
	X X	94.842290	
	ху	14.666980	
	X Z	-3.549274	
	уу	51.919650	
	y z	0.372805	
	ZZ	94.329090	
Dipole-quadrupole:			
	X XX	-25.421340	
	х ху	-43.771720	
	X XZ	7.077876	
	х уу	13.097790	
	x yz	-24.523518	
	X ZZ	12.323550	
	y xx	-38.161159	
	y xy	-33.500910	
	y xz	-11.839840	
	у уу	-8.265131	
	y yz	11.442672	
	y zz	46.426290	
	Z XX	-5.321900	
	z xy	7.718745	
	Z XZ	-43.223267	
	z yy	2.901502	

z yz	13.021558
Z ZZ	2.420398
XX XX	2939.828600
xx xy	197.319712
XX XZ	30.898974
xx yy	-653.207000
xx yz	-82.076733
XX ZZ	-2286.621600
xy xy	1191.406500
xy xz	-83.816550
ху уу	220.883602
xy yz	-51.762007
xy zz	-418.203314
XZ XZ	2412.473250
xz yy	27.840003
xz yz	585.509850
XZ ZZ	-58.738977
уу уу	1184.852400
yy yz	7.635147
yy zz	-531.645400
yz yz	1300.629750
yz zz	74.441585
ZZ ZZ	2818.267000

Quadrupole-quadrupole:

Table A-2. Coordinates (Angstroms) of the FOX-7 monomer (R enantiomer) used in potential fitting and simulation. The S configuration is generated by reflection of the atomic coordinates below through the *xz* plane.

C1	-0.02155	0.01502	0.02857
C2	0.53064	-0.45663	1.29036
N3	-1.38939	0.17793	-0.21164
N4	0.85035	0.2896	-1.06713
N5	-0.26101	-0.8488	2.26997
N6	1.84152	-0.54663	1.46426
07	-1.78082	0.74484	-1.25755
O8	-2.20401	-0.19519	0.65844
O9	1.97937	0.74746	-0.82794
O10	0.49545	0.03538	-2.23025
H11	0.07243	-1.12864	3.0372
H12	-1.12705	-0.83961	2.1773
H13	2.14205	-0.83961	2.18861
H14	2.38338	-0.22212	0.91008

Table A-3. Atomic charges corresponding to atom labeling in Table A-2.

<u>Atom</u>	<u>CHARGE (a.u.)</u>
C1	-0.4100270
C2	0.7362470
N3	0.6745610
N4	0.7220050
N5	-0.8923120
N6	-0.9515670
07	-0.3605990
O8	-0.4836020
O9	-0.4675610
O10	-0.3729130
H11	0.4209090
H12	0.4655270
H13	0.4564320
H14	0.4629000

i	j	A _{ij} (kcal/mol)	B _{ij} (Ang)	C _{ij} (Ang ⁶ * kcal/mol)
С	С	764046.0121	0.2086	0.0801
С	Ν	72.8379	0.1816	19.0796
С	0	88075.9408	0.2529	250.2805
С	Н	3879.6614	0.3185	204.8703
Ν	Ν	111518.8046	0.2775	822.6244
Ν	0	5658.5589	0.3329	645.8825
Ν	Н	10158.7541	0.2491	0.2165
0	0	88046.0549	0.2425	129.6677
0	Н	73731.6262	0.2196	278.7350
Н	Н	11.2533	0.7838	5.7440

Table A-4. Potential parameters for R-R interactions.

Table A-5. Potential parameters for R-S interactions.

i	j	A _{ij} (kcal/mol)	B _{ij} (Ang)	C _{ij} (Ang ⁶ * kcal/mol)
С	С	512900.0918	0.2501	0.0732
С	Ν	60.4168	0.1845	12.7313
С	0	67862.0867	0.2467	169.1749
С	Н	2577.8179	0.2844	204.7925
Ν	Ν	80398.8032	0.2827	1116.5450
Ν	0	6696.2147	0.3711	903.9598
Ν	Н	14899.0853	0.2263	0.3438
0	0	82609.7660	0.2525	243.1237
0	Н	42344.2009	0.2104	252.6077
Н	Н	7.4991	0.5414	8.2593

Table A-6. Energy components (kcal/mol) for minima on the RR and RS potential energy surfaces shown in Figures 5 and 6. Note that the induction energy includes the higher order induction/exchange-induction contribution extracted from the supermolecular approach. The tabulated exchange energy contains the first order exchange and second order exchange-induction and exchange-dispersion contributions.

Energy/Structure	<u>RR1</u>	<u>RR2</u>	<u>RS1</u>	<u>RS2</u>
COM distance (Å)	3.46	4.35	3.72	6.85
Electrostatic	-14.965	-13.182	-13.476	-12.672
Induction	-8.933	-6.395	-6.114	-4.500
Dispersion	-14.122	-9.022	-11.601	-5.101
Exchange	23.707	15.925	14.811	9.193
E _{int}	-14.314	-12.674	-16.379	-13.080
Fit	-16.141	-13.298	-15.328	-13.508

Model	Crystallographic structural parameters						
Wibuci	SX	sy	SZ	θ (°)	¢ (°)	ψ(°)	
		Mo	olecule 1			I	
Expt.	0.76459	0.17122	0.63938	72.35	178.99	106.64	
Theory	0.77744	0.16808	0.63176	70.91	179.29	111.12	
Ideal	0.77744	0.16808	0.63176	70.91	179.29	111.12	
		Mo	olecule 2				
Expt.	0.73541	0.67122	0.86062	72.35	1.01	-106.64	
Theory	0.73344	0.66803	0.84637	70.91	0.74	-105.26	
Ideal	0.72256	0.66808	0.86824	70.89	0.72	-111.35	
		Mo	olecule 3				
Expt.	0.23541	0.82878	0.36062	72.35	178.99	106.64	
Theory	0.23182	0.83532	0.34646	70.91	179.28	109.42	
Ideal	0.22256	0.83192	0.36824	70.91	179.29	111.12	
		Mo	olecule 4				
Expt.	0.26459	0.32878	0.13938	72.35	1.01	-106.64	
Theory	0.27578	0.33542	0.13205	70.91	0.74	-104.77	
Ideal	0.27744	0.33192	0.13176	70.89	0.72	-111.35	

Table A-7. Comparison of experimental²⁹ and predicted molecular structural parameters^{a,b} for FOX-7.

a. Sx, Sy, Sz are center of mass fractional coordinates within the unit cell.

b. θ, ϕ, ψ are Euler angles describing molecular orientation within the unit cell.