	Reaction	k ^a
R1a	$CF_3CH_2CHO + hv(308 \text{ nm}) \rightarrow CF_3CH_2 + HCO$	see text
R1b	\rightarrow CF ₃ CH ₃ + CO	see text
R1c	$\rightarrow CF_3CH_2CO + H$	see text
R2a	$HCO + O_2 \rightarrow HO_2 + CO$	see text
R2b	\rightarrow HC(O)O ₂ (+M) \rightarrow HO ₂ + CO	see text
R3	$CF_3CH_2CO \rightarrow CF_3CH_2 + CO$	$2.95 \times 10^{4 \text{ b}}$
R4	$\mathrm{H} + \mathrm{O}_2 (+\mathrm{M}) \longrightarrow \mathrm{HO}_2 (+\mathrm{M})$	6.03×10^{-13} c
R5a	$HC(O)O_2 + HO_2 \rightarrow HC(O)OH + O_3$	2.10×10^{-12} d,e
R5b	\rightarrow HC(O)OOH + O ₂	$5.74 \times 10^{-12 \text{ d,e}}$
R5c	\rightarrow HC(O)O + OH + O ₂	6.16×10^{-12} d,e
R6a	$CF_3CH_2 + O_2 (+M) \rightarrow CF_3CH_2O_2 (+M)$	6.71×10^{-12} d,e
R6b	$\rightarrow CF_3CH + HO_2$	3.80×10^{-15} d,e
R7a	$2 \operatorname{CF_3CH_2O_2} \rightarrow 2 \operatorname{CF_3CH_2O} + \operatorname{O_2}$	3.97×10^{-14} d,e
R7b	\rightarrow CF ₃ CHO + CF ₃ CH ₂ OH + O ₂	1.22×10^{-14} d,e
R7c	\rightarrow CF ₃ CH ₂ OOCH ₂ CF ₃ + O ₂	1.22×10^{-14} d,e
R8	$CF_3CH_2O + O_2 \rightarrow CF_3CHO + HO_2$	8.06×10^{-15} d,e
R9	$CF_3CHO + hv(308 \text{ nm}) \rightarrow CF_3 + HCO$	1.02×10^{-3} f
R10	$CF_3 + O_2(+M) \rightarrow CF_3O_2(+M)$	$2.93\times10^{\text{-12 g}}$
R11	$2 \operatorname{CF_3O_2} \to 2 \operatorname{CF_3O} + \operatorname{O_2}$	$1.50\times10^{\text{-12 g}}$
R12	$CF_3O + O_2 \rightarrow F_2CO + FO_2$	$1.00\times10^{\text{-18 g}}$
R13	$CF_3CH_2O \rightarrow CF_3 + CH_2O$	8×10^{4h}
R14a	$CF_3CH_2CO + O_2 \rightarrow CF_3CH_2C(O)O_2 (+M)$	$5.91 \times 10^{-12 \text{ i,e}}$
R14b	\rightarrow OH + Products	$5.37 \times 10^{-13 \text{ i,e}}$
R15a	$CF_3CH_2C(O)O_2 + HO_2 \rightarrow CF_3CH_2C(O)OH + O_3$	2.10×10^{-12} d,e
R15b	\rightarrow CF ₃ CH ₂ C(O)OOH + O ₂	$5.74 \times 10^{-12 \text{ d,e}}$
R15c	\rightarrow CF ₃ CH ₂ C(O)O + OH + O ₂	6.16×10^{-12} d,e
R16a	$CF_{3}CH_{2}C(O)O_{2} + CF_{3}CH_{2}O_{2} \rightarrow CF_{3}CHO + CF_{3}CH_{2}C(O)OH + O_{2}$	2.40×10^{-12} j,e
R16b	\rightarrow CF ₃ CH ₂ C(O)O + CF ₃ CH ₂ O + O ₂	9.60×10^{-12} j,e
R17	$OH + CF_3CH_2CHO \rightarrow H_2O + CF_3CH_2CO$	$2.59 \times 10^{-12 \text{ k}}$
R18	$OH + CF_3CHO \rightarrow H_2O + CF_3CO$	5.70×10^{-13} g
R19	$OH + CF_3 \rightarrow F_2CO + HF$	$1.50 imes 10^{-111}$
R20	$HO_2 + CH_2O \rightarrow HOCH_2OO$	$7.9\times10^{\text{-14 d}}$
R21a	$2 \operatorname{HOCH}_2\operatorname{OO} \rightarrow \operatorname{HC}(\operatorname{O})\operatorname{OH} + \operatorname{CH}_2(\operatorname{OH})_2 + \operatorname{O}_2$	$7.0\times10^{\text{-13}\text{j}}$
R21b	$\rightarrow 2 \text{ HOCH}_2\text{O} + \text{O}_2$	$5.5\times10^{\text{-12}\text{j}}$
R22	$OH + C_6H_{12} \rightarrow H_2O + C_6H_{11}$	$6.97\times10^{^{-12}m}$
R23	$OH + CF_3CH_2OH \rightarrow H_2O + CF_3CHOH$	$1.02\times10^{\text{-13 n}}$

Table S2. Reaction scheme used in the numerical simulation of the temporal profiles of the detected products in the presence of OH-scavenger at 400 Torr

R24	$OH + HC(O)OH \rightarrow H_2O + HC(O)O$	$4.5\times10^{\text{-13 d}}$
R25	$OH + CH_2O \rightarrow H_2O + HCO$	$8.5\times10^{\text{-}12}$
R26	$CF_3CH_2O_2 + HO_2 \rightarrow CF_3CH_2OOH + O_2$	8.00×10^{-12} j,e
R27	$CF_3CH_2C(O)O \rightarrow CO_2 + CF_3CH_2$	Instantaneous
R28	$CF_3 + CF_3CH_2CHO \rightarrow CF_3H + CF_3CH_2CO$	$1.58\times10^{\text{-12 o}}$
R29	$2 \text{ HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$	1.60×10^{-12} c
R30	$2 \operatorname{HO}_2(+M) \longrightarrow \operatorname{H}_2\operatorname{O}_2 + \operatorname{O}_2(+M)$	6.74×10^{-13} c

^a First order rate coefficients in s⁻¹; second order rate coefficients in cm³ molecule⁻¹ s⁻¹; ^b Maricq *et al.*²⁰; ^c Atkinson *et al.*³⁵; ^d Atkinson *et al.*¹⁵; ^e Data taken from methyl substituted molecules; ^f estimated from Chiappero *et al.*¹⁰; ^g Atkinson *et al.*⁷; ^h Curran ^{36; i} Baeza Romero *et al.*³⁷; ^j IUPAC recommendation ²⁸ for CF₃CO; ^k Antiñolo *et al.*⁸; ¹ Srinivasan *et al.*³⁸; ^m Atkinson *et al.*³⁹; ⁿ Hurley *et al.*⁵; ^o Loucks *et al.*⁴⁰ for CF₃CHO.

References

- 35 R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe. *Atmos. Chem. Phys.*, 2004, **4**, 1461–1738.
- 36 H. J. Curran. Int. J. Chem. Kinet., 2006, 38, 250-275.
- 37 M. T. Baeza Romero, M. A. Blitz, D. E. Heard, M. J. Pilling, B. Price, and P. Seakins. *Chem. Phys. Lett.*, 2005, 408, 232–236.
- 38 N. K. Srinivasan, M. C. Su, J. V. Michael, S. J. Klippenstein, and L. B. Harding, *J. Phys. Chem. A*, 2007, **111**, 6822–6831.
- 39 R. Atkinson, Atmos. Chem. Phys. 2003, 3, 2233-2307.
- 40 L. F. Loucks, M. T. H. Liu, and D. G. Hooper. Can. J. Chem., 1979, 57, 2201-2210.