
Supporting Information

Investigation on the Dynamics of Electron Transport and Recombination in TiO₂ Nanotube/Nanoparticle Composite Electrodes for Dye-sensitized Solar Cells

Raheleh Mohammadpour,^a Azam Iraji zad,^{*a} Anders Hagfeldt^b and Gerrit Boschloo^{*b}

Figure S1 Reflectance spectra of bare composite TiO₂ films on TEC8 glass electrodes in air. The spectrophotometer used was an Avaspec2048-TEC UV-Vis-NIR with integrating sphere Avalight-DHS, collecting total (diffuse + specular) reflectance.

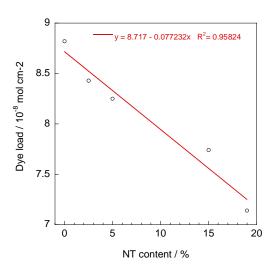
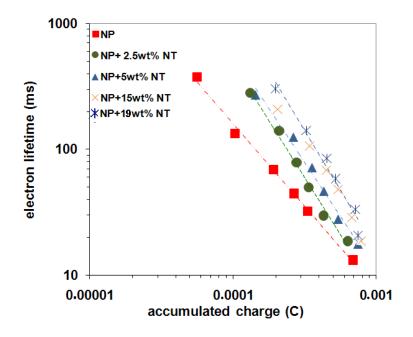
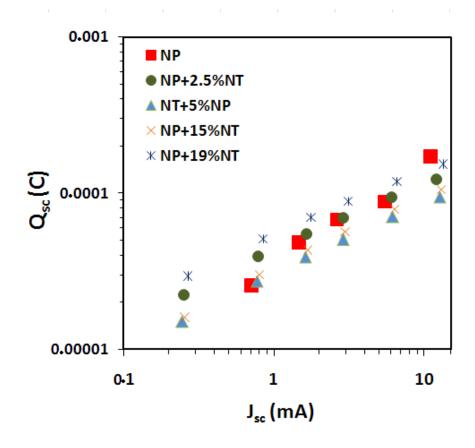




Figure S2 Amount of adsorbed N719 dye on composite TiO_2 electrodes (thickness 10 μ m), determined by dye desorption. The drawn line is a linear regression fit.

Figure S3 Dependence of electron lifetime on accumulated charge density under opencircuit conditions. Increase in NT content leads to increased lifetime at a given charge, because of the high trap density in the TiO_2 nanotubes. Note that the V_{OC} decreases with increased NT content.

Figure S4 Extracted charge at short circuit condition as function of short circuit current of the solar cell based on NT/NP composite electrodes.

Composition	(cm ⁻³ eV ⁻¹)	m _c (meV)
NP	1×10^{15}	87
NP + 2.5 wt% NT	2×10^{15}	92
NP + 5 wt% NT	3×10^{15}	97
NP + 15 wt% NT	5×10^{15}	105
NP + 19 wt% NT	1×10 ¹⁶	111

Table S1Fitting parameters for the exponential trap distribution (Eq. 1, Fig. 3) in
composite $TiO_2 NT/NP$ electrodes.