Supplementary Materials

Infrared and microwave spectra of the acetylene-ammonia and carbonyl sulfide-ammonia complexes: a comparative study of a weak C-H \cdots N hydrogen bond and an S \cdots N bond

Xunchen Liu,^a and Yunjie Xu^{*a}

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

Supplementary Materials include:

- 1. Ab initio harmonic and anharmonic frequency calculations
- 2. Calculation of electrostatic interactions
- 3. The experimental infrared and microwave transitions are listed in Table 2 and Table 3

1 Ab initio harmonic and anharmonic frequency calculations

Harmonic and anharmonic vibrational frequencies and zero-point energies of the complexes and the monomer subunits at the MP2/aug-cc-pVTZ level of theory.

HCCH-NH₃:

Mode(Quanta)	E(harm)	E(anharm)	Aa(z)	Ba(x)	Ca(y)
Fundamental	Bands (DE w.r.t.	Ground Sta	ate)		
1(1)	3496.371	3384.925	0.180750	-0.001946	-0.001946
2(1)	3494.521	3361.181	0.161732	-0.001980	-0.001980
3(1)	3335.407	3259.993	0.189251	-0.000978	-0.000978
4(1)	1949.820	1924.933	0.193146	-0.002007	-0.002007
5(1)	1076.846	1014.298	0.147592	-0.002292	-0.002292
6(1)	130.982	136.235	0.193765	-0.003977	-0.003977
7(1)	3639.281	3471.484	0.183533	-0.002027	-0.002027
8(1)	3639.281	3471.639	0.183533	-0.002027	-0.002027
9(1)	1669.153	1626.978	0.136596	-0.001978	-0.002004
10(1)	1669.153	1627.728	0.136596	-0.002004	-0.001978
11(1)	868.800	773.318	0.197668	-0.003414	-0.003388
12(1)	868.800	774.761	0.197668	-0.003388	-0.003414
13(1)	640.486	644.191	0.194749	-0.002215	-0.002246

^a Department of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2 Tel: (+1)780-492-8231; E-mail: yunjie.xu@ualberta.ca

3650.040

14(1)	640.486	646.389	0.194750	-0.002246	-0.002215
15(1)	213.692	223.212	0.540488	-0.002460	-0.002516
16(1)	213.692	217.098	0.540487	-0.002516	-0.002460
17(1)	90.760	151.613	0.150804	-0.001465	-0.001682
18(1)	90.760	156.274	0.150804	-0.001682	-0.001465
ZPE(harm) =	0.16585D+03 kJ/m	ol	ZPE(anh) = 0.	16338D+03 kJ	/mol
OCS-NH ₃ :					
Mode(Quanta)	E(harm)	E(anharm)	Aa(z)	Ba(x)	Ca(y)
Fundamental	Bands (DE w.r.t.	Ground St	tate)		
1(1)	3496.905	3352.323	0.310162	-0.000321	-0.000321
2(1)	2069.121	2044.655	0.352849	-0.000399	-0.000399
3(1)	1061.474	986.344	0.300634	-0.000466	-0.000466
4(1)	878.034	865.696	0.352474	-0.000318	-0.000318
5(1)	86.661	69.156	0.352690	-0.001312	-0.001312
6(1)	3642.217	3474.483	0.344760	-0.000326	-0.000326
7(1)	3642.217	3474.412	0.344760	-0.000326	-0.000326
8(1)	1668.642	1621.773	0.295348	-0.000351	-0.000347
9(1)	1668.642	1622.226	0.295348	-0.000347	-0.000351
10(1)	534.858	542.887	0.353333	-0.000430	-0.000439
11(1)	534.858	537.535	0.353333	-0.000439	-0.000430
12(1)	123.310	111.301	0.842806	-0.000338	-0.000353
13(1)	123.310	114.526	0.842811	-0.000353	-0.000338
14(1)	33.234	41.209	0.328577	-0.000293	-0.000388
15(1)	33.234	51.612	0.328575	-0.000388	-0.000293
ZPE(harm) =	0.11721D+03 kJ/m	ol	ZPE(anh) = 0.	11519D+03 kJ	/mol
NH ₃ :					
Mode(Quanta)	E(harm)	E(anharm)	Aa(z)	Ba(x)	Ca(y)
Fundamental	Bands (DE w.r.t.	Ground St	ate)		
1(1)	3503.370	3360.670	-0.217151	-0.217197	-0.154949
2(1)	1039.089	961.134	-0.149187	-0.149168	-0.174113

4(1)	3650.040	3484.114	-0.240613	-0.241551	-0.120067
5(1)	1668.900	1621.450	0.300007	0.016024	-0.172464
6(1)	1668.900	1621.453	0.016029	0.300003	-0.172464
ZPE(harm) =	0.90799D+02 kJ/m	mol	ZPE(anh) = 0.	89335D+02 kJ	/mol
HCCH:					
Frequencies	601.3897		601.3897		753.9250
Frequencies	753.9250		1967.8846		3431.6016
Frequencies	3533.6350				
Zero-point d	correction=		C	.026526 (Har	tree/Particle)

-0.241515

3484.095

OCS:

3(1)

-0.240649

-0.120067

 Frequencies - 522.6526
 522.6526
 888.0232

 Frequencies - 2083.7994
 0.009152 (Hartree/Particle)

2 Calculations of electrostatic interactions

Potential energies for the dipole-dipole interaction in the C_{3V} symmetric conformer of the complexes is:¹

$$E_{d-d} = -2 \frac{\mu^{A} \mu^{B}}{4\pi\epsilon_{0} r^{3}}$$
(1)

dipole-quadrupole interaction (C_{3V} symmetric conformation, with the dipole moment pointing to or away from the quadrupole):

$$E_{d-q} = \pm 3 \frac{\mu^A Q_{ZZ}^B}{4\pi\epsilon_0 r^4}$$
⁽²⁾

dipole-quadrupole interaction (T-shaped conformation, with the dipole moment of NH₃ pointing to HCCH in HCCH-NH₃ or pointing away from OCS in OCS-NH₃):

$$E_{d-q} = \mp 1.5 \, \frac{\mu^A \, Q_{ZZ}^B}{4\pi\epsilon_0 r^4} \tag{3}$$

quadrupole-quadrupole interaction (C_{3V} symmetric conformer):

$$E_{q-q} = 6 \frac{Q_{ZZ}^A Q_{ZZ}^B}{4\pi\epsilon_0 r^5}$$
(4)

quadrupole-quadrupole interaction (T-shaped conformer):

$$E_{q-q} = -3 \frac{Q_{ZZ}^A Q_{ZZ}^B}{4\pi\varepsilon_0 r^5}$$
(5)

By taking the experimental values for the dipole moments of ammonia $(1.472 \text{ Debye})^2$ and OCS $(0.715 \text{ Debye})^3$, quadrupole moment of acetylene $(6.335 \text{ DebyeÅ})^4$, ammonia $(-2.320 \text{ DebyeÅ})^5$, and OCS $(-0.584 \text{ DebyeÅ})^6$, and the distance between the subunits determined from this work, the electrostatic interaction energies were estimated and listed in Table 1 (negative means attractive).

Table 1 Electrostatic interaction energies of HCCH-NH_3 and OCS-NH_3 (in kJ/mol)

	C _{3V} -HCCH-NH ₃	T-shaped HCCH-NH ₃	C_{3V} -OCS-NH ₃	T-shaped OCS-NH ₃
dipole-dipole			-1.5	
quadrupole-dipole	-6.2	-3.1	0.4	-0.2
dipole-quadrupole			-0.8	
quadrupole-quadrupole	-4.8	2.4	0.3	-0.2
sum	-11.0	-0.7	-1.6	-0.4

Fig. 2 Electrostatic potential (from -0.05 au to 0.1 au) mapped on the electron density isosurface of 0.01 for OCS, C_{3V} and T-shaped OCS-NH₃. The blue part of the surface shows a positive electrostatic potential and hence attracts the electronegative N atom of ammonia. For the two possible binding sites of ammonia, the attractive field strengths experienced by the N atom of ammonia are different, showing a subtle preference for the linear configuration.

3 The experimental infrared and microwave transitions

The observed infrared and microwave transitions are listed in Table 2 and Table 3.

Table 3 Observed microwave transitions of HCCH-NH_3 and OCS-NH_3 (in MHz)

Table 2	Observed infrared transitions of HCCH-NH ₃ $K = 1 \leftarrow 0$
subband	and OCS-NH ₃ $K = 2 \leftarrow 1$ subband (in cm ⁻¹)

1/ 1//	UCCU NU	A	OCC NIL	A	-
$J^{*} \leftarrow J^{*}$	HCCH-NH ₃	Δv	OCS-NH ₃	Δv	2
11 ~ 12	1652.5440	-0.0001			
$10 \leftarrow 11$	1652.7250	-0.0003			
9←10	1652.9082	-0.0001			
8←9	1653.0911	-0.0002	1636.6666	-0.0004	
$7 \leftarrow 8$			1636.7667	-0.0006	2
6←7	1653.4573	0.0005	1636.865	-0.0024	
$5 \leftarrow 6$	1653.6400	0.0006	1636.967	-0.0008	
4←5	1653.8219	-0.0000	1637.0681	0.0000	
3←4	1654.0038	-0.0004	1637.269	0.0046	
2←3	1654.1857	0.0005	1637.1728	0.0002	3
$1 \leftarrow 2$			1637.3692	0.0006	
$1 \leftarrow 0$			1637.6693	0.0007	
$2 \leftarrow 1$	1655.0943	-0.0010	1637.7684	-0.0001	
3←2	1655.2756	-0.0002	1637.8685	0.0000	
4←3	1655.4566	-0.0004	1637.9674	-0.0008	3
5←4	1655.6377	-0.0001	1638.0679	-0.0001	
$6 \leftarrow 5$	1655.8187	0.0002	1638.1682	0.0005	
7←6	1655.9995	0.0004	1638.2673	-0.0002	
8←7	1656.1786	-0.0004	1638.3674	0.0003	3
9←8	1656.3595	0.0003	1638.4670	0.0003	
10←9	1656.5388	0.0001	1638.5658	-0.0003	
$11 {\leftarrow} 10$	1656.7183	0.0002	1638.667	0.0010	4
12 ~ 11	1656.8969	-0.0004	1638.7647	-0.0003	
13←12	1657.0767	0.0006			
14 ~ 13	1657.2529	-0.0006			

References

- 1 S. Kielich, *Dielectric and Related Molecular Processes*, Royal Society of Chemistry, Cambridge, 1972, vol. 1, pp. 192–387.
- 2 M. D. Marshall, K. C. Izgi and J. S. Muenter, J. Chem. Phys., 1997, 107, 1037–1044.
- 3 K. Tanaka, T. Tanaka and I. Suzuki, J. Chem. Phys., 1985, 82, 2835–2844.
- 4 H. Hamano, J. Chem. Phys., 1961, 34, 1678–1683.
- 5 S. Kukolich, Chem. Phys. Lett., 1970, 5, 401–404.
- 6 Z. Benkova and A. Sadlej, *Mol. Phys.*, 2004, **102**, 687–699.

J'K'	F'	J''K''	F''	HCCH-NH ₃	Δv^{o}	$OCS-NH_3$	Δv^{o}
10	1	0 0	1			5448.3207	0.6
	2		1			5449.2573	2.0
	0		1			5450.6695	1.4
20	2	10	2	5996.4415	3.2	10897.1010	0.1
	1		0	5996.5962	2.7	10897.2572	0.3
	2		1	5997.3359	1.2	10898.0414	1.2
	3		2	5997.4092	8.3	10898.1065	0.8
	1		1	5998.8251	0.4		
21	2	11	1	5994.8918	0.1	10893.6791	0.7
	2		2	5995.3354	2.5		
	1		1	5995.6453	9.6	10894.4634	0.9
	3		2	5995.8145	1.5	10894.6523	0.1
	1		0	5996.7507	0.4	10895.6364	0.1
30	3	2.0	3	8994.9376	0.4	16345.6342	1.7
	2		1	8995.7436	0.9	16346.4841	1.9
	3		2	8995.8890	4.3	16346.6342	4.5
	4		3	8995.9320	3.2	16346.6768	0.7
	2		2	8997.2346	2.4	16348.0478	0.2
31	3	21	3	8992.6776	1.0	16340.5782	2.8
	3		2	8993.1555	0.9	16341.0885	4.4
	4		3	8993.4175	2.8	16341.3620	1.7
	2		2	8994.1584	0.4	16342.1410	0.2
32	3	22	2			16324.4750	0.4
	2		1			16326.0382	1.7
	4		3			16325.4821	1.3
40	4	30	4	11993.3234	1.2		
	3		2	11994.2455	5.6		
	4		3	11994.3152	0.3		
	5		4	11994.3392	1.8		
	3		3	11995.5906	0.6		
41	4	31	4	11990.0958	2.7		
	4		3	11990.8376	0.7		
	3		2	11990.9114	5.1		
	5		4	11990.9550	0.2		
	3		3	11991.9177	3.0		
50	4	40	3	14992.5149	6.4		
	5		4	14992.5613	4.6		
	6		5	14992.5749	2.6		
51	5	41	4	14988.2605	4.4		
	4		3	14988.2971	0.3		
	6		5	14988.3304	0.8		
60	5	50	4	17990.5478	3.6		
-	7	-	6	17990.5876	2.1		
61	6	51	5	17985.4453	1.9		
~ •	7		6	17985.4940	6.7		
<i>a</i> F	T	T	-				

$$\mathbf{F} = \mathbf{I}_{\mathbf{N}} + \mathbf{J}$$

^b $\Delta v = v_{experimental} - v_{calculated}$ (in kHz)