Double ionization of cycloheptatriene and the reactions of the resulting $C_7 H_n^{2+}$ dications (*n* = 6, 8) with xenon

Daniela Ascenzi,* Julia Aysina, Emilie-Laure Zins, Detlef Schröder,* Jan Žabka, Christian Alcaraz, Stephen D. Price, and Jana Roithová,*

emails: ascenzi@science.unitn.it; detlef.schroeder@uochb.cas.cz; roithova@natur.cuni.cz

Electronic Supplementary Information

Content

Energy dependences of the ionic products of the reaction of $C_7 H_8^{2+}$ with neutral xenon	S 1
ction of mass-selected $C_7 H_6^{2+}$ with neutral xenon	S2
Reactive monitoring of mass-selected $C_7 H_6^{2+}$ with molecular nitrogen	S 3

Figure S1. Retarding potential analysis of the mass-selected $C_7H_8^{2+}$ dication generated from dissociative electron ionization of CHT as a function of the nominal collision energy in the laboratory and of selected product ions ($C_7H_8^+$, $C_7H_7^+$, $C_7H_6^+$, $C_7H_5^+$, Xe⁺, XeH⁺, $C_7H_6Xe^{2+}$, $C_6H_5^+$ and $C_5H_3^+$) formed when Xe is added to the scattering cell at a pressure of about 3×10^{-3} mbar. The abundances are normalized (to a value of 1.0) to the largest ion intensity observed for $C_7H_8^{2+}$ at $E_{LAB} \sim 10$ eV. The abundances for $C_7H_8^+$ have been corrected for isotopic ¹³C contribution from the more intense $C_7H_7^+$ product. Also shown is the first derivative of the retarding field curve for the primary dication.

Figure S2. Reaction of the mass-selected $C_7 H_6^{2+}$ dication generated from dissociative electron ionization of CHT with Xe (at a pressure of about 2×10^{-4} mbar in the reaction cell) at a collision energy E_{CM} =1.1 eV. The insets a) and b) show the mass region of the Xe⁺/XeH⁺ and the $C_7 H_6 Xe^{2+}$ products on expanded scales.

Figure S3. Yields of the parent dications $C_7H_6^{2+}$ (filled circles) and of the association product $C_7H_6N_2^{2+}$ (open circles) formed in the reaction of mass-selected $C_7H_6^{2+}$ dications with N_2 as a function of the energy of photons used for the dissociative double ionization of CHT in the ion source. In the case of $C_7H_6N_2^{2+}$ the solid line represents the data for $C_7H_6^{2+}$ multiplied by 0.36 to indicate that the product $C_7H_6N_2^{2+}$ appears at the same photon energy as the $C_7H_6^{2+}$ reagent dication.