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To reveal the contribution of negative energy states to correlation, a complete derivation of the first and second order (nonradia-
tive) QED energies for instantaneously interacting electrons is presented based on the simple rules for algebraically evaluating
the Feynman diagrams. The previous equations that hold only for the special case of two electrons are hence corrected.

Although claimed for a many electron system, some of the
(nonradiative and nonretarded) QED energy expressions (i.e.,
Eqs. (92), (95), and (107)) in Ref.1 are found to hold only for
the special case of two electrons. In particular, except for the
diagrams considered before (see Figs. (3a) to (3h)), the so-
called three-electron-two-photon diagram2 shown in Fig. (3i)
should also be included for the second order energy E(2) of
a many-electron system. Since the QED energy expressions
for more than three electrons have not yet been documented in
the literature, it is worthwhile to make a complete derivation
here. For this purpose, some simple rules are first provided in
Appendix A so as to directly write down the algebraic equa-
tions for the Feynman diagrams. Further combined with the
integral identities in Appendix B, the elements of the S-matrix
and hence the energy shifts can readily be evaluated. It is fur-
ther shown that the disconnected but linked diagrams shown
in Fig. (4) should also be considered to precisely cancel the
singular terms arising from Fig. (3), a point that is rarely men-
tioned in the QED literature. The final two-body terms of E(2)

include Eqs. (30), (31), (42), and (76), while the one-body
terms include Eqs. (97) and (99). Consequently, Eqs. (95)
and (107) in Ref.1 should be replaced with the present Eqs.
(42) and (99), respectively. Although formerly the same, Eq.
(92) in Ref.1 (actually the first term of the present Eq. (32))
should be understood as the present Eq. (72) arising from
Fig. (3i). Notwithstanding these corrections for the equa-
tions, which are only necessary for more generality, none of
the statements in the original context needs to be revised. In
particular, the ‘(time-independent) potential-independent no-
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pair approximation + (time-dependent) perturbative QED’
approach advocated therein for high-precision structure calcu-
lations is not altered. This approach not only gets rid of the in-
trinsic O(Zα)3 uncertainty of the no-pair DC/DCB equation,
but also paves a seamless bridge between relativistic quantum
chemistry and QED that used to be two mutually exclusive
subfields.
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Fig. 3 Feynman diagrams associated with the zeroth (a), first (b, c),
and second (d-i) order energies
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(a) (b) (c)

Fig. 4 Disconnected but linked Feynman diagrams

(a) (b) (c) (d)

Fig. 5 Feynman diagrams for (a) electron self-energy, (b) vacuum
polarization, (c) vertex correction, and (d) photon self-energy
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A The S-matrix

According to the S-matrix formulation of QED, we need to
consider the diagrams in Figs. (3) to calculate the first and
second order energies due to the perturbing potentials (cf. Eqs.
(85) and (86) in Ref.1) by means of the following formulae

E(1) = limγ→0
iγ
2 {⟨α |S(1)|α⟩+[2⟨α |S(2)|α⟩
−⟨α |S(1)|α⟩2]}, (1)

E(2) = limγ→0
iγ
2 {[3⟨α|S(3)|α⟩−3⟨α |S(1)|α⟩⟨α|S(2)|α⟩]
+[4⟨α|S(4)|α⟩−2⟨α |S(2)|α⟩2]}, (2)

where |α⟩ represents the unperturbed electronic state. It will
be shown later on that the disconnected but linked diagrams
in Fig. (4) are also needed to fully cancel the singular terms
arising from Fig. (3), a point that is rarely mentioned in the
QED literature. The n-th order S-matrix defined as

S(n) =
(−i)n

n!

∫
dx4

1 · · ·
∫

dx4
nT [H (x1) · · ·H (xn)]

× e−γ(|t1|+···|tn|), (3)
H (x) = −eϕ †(x)cαµ Aµ(x)ϕ(x) (4)

can be rewritten in second-quantized form

S(n) =
nd

n!
(S(n))q1q2···qm

p1 p2···pm{ap1 p2···pm
q1q2···qm }n, (5)

where {p1, p2, · · · , pm} and {q1,q2, · · · ,qm} denote the re-
spective outgoing and incoming free orbital lines of a Feyn-
man diagram, while nd represents the degeneracy of the dia-
gram. The weight factor nd can be counted as follows: Each
of the possible assignments of the electron propagators

SF(xi,x j) =
∫ dω

2π SF(ω ;⃗ri ,⃗r j)e−iω(ti−t j), i ≤ j, (6)

SF(ω ;⃗ri ,⃗r j) =
φp (⃗ri)φ†

p (⃗r j)

ω−εp(1−iη) (7)

contributes a factor of two if i < j or a factor of one if
i = j. The numbers of such electron propagators are denoted
as nF2 and nF1, respectively. In contrast, each of the possi-
ble assignments (nP) of all the photon interactions I(z;⃗ri ,⃗r j)
contributes a factor of one independently of the ordering of
the vertices i and j, i.e., I(z;⃗r j ,⃗ri) = I(z;⃗ri ,⃗r j). Therefore,
nd = max(1,nF1 +2nF2)×max(1,nP). Specific examples are
given in Table 2. The integral (S(n))q1q2···qm

p1 p2···pm in Eq. (5) reads

(S(n))q1q2···qm
p1 p2···pm = (−1)nl

∫ z1

2π

∫ z2

2π
· · ·

∫ ω1

2π

∫ ω2

2π
· · ·

× ⟨p1 p2 · · · pm|
× (−i)I(z1 ;⃗ri1 ,⃗ri2)(−i)I(z2 ;⃗ri3 ,⃗ri4) · · ·
× iSF(ω1 ;⃗r j1 ,⃗r j2)iSF(ω2 ;⃗r j3 ,⃗r j4) · · ·
× |q1q2 · · ·qm⟩
× 2π∆γ(E1)2π∆γ(E2) · · ·2π∆γ(En). (8)

That is, there is a factor
∫ dω

2π iSF(ω ;⃗ri ,⃗r j) for each contracted
pair of electron fields and a factor

∫ dz
2π (−i)I(z;⃗rk ,⃗rl) for each

photon interaction. In the Coulomb gauge, the instantaneous
Coulomb/Breit interaction I(z;⃗rk ,⃗rl) is simply the g(k, l) op-
erator defined in Eq. (5) in Ref.1. Note that there is no z-
integration for the counter potential −U (⃗r), see Eq. (86) in
Ref.1. Furthermore, there is a factor 2π∆γ(Ei) for each vertex
arising from the time integration (see Eq. (104)). The argu-
ment Ei is just the difference between the incoming and out-
going orbital energies/photon frequencies through the vertex.
Finally, there is a global factor (−1)nl , with nl being the num-
ber of loops. These rules of thumb for evaluating the Feyn-
man diagrams have been documented in the recent book by
Lindgren3. However, they are only complete when combined
with the present rules for counting the degeneracy nd of the
diagrams. The integral identities in Sec. B can further be em-
ployed to facilitate the evaluation of (S(n))q1q2···qm

p1 p2···pm (8). The
following identity is also very useful for evaluating the expec-
tation value of the excitation operator {ap1 p2···pm

q1q2···qm }n (normal
ordered with respect to the NES) over the unperturbed state
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|α⟩:

⟨α|ap1 p2···pm−1 pm
q1q2···qm−1qm |α⟩= ⟨α| δ pm

qm
ap1 p2···pm−2 pm−1

q1q2···qm−2qm−1

− δ pm
qm−1

ap1 p2···pm−2 pm−1
q1q2···qm−2qm

− δ pm
qm−2

ap1 p2···pm−2 pm−1
q1q2···qmqm−1

− ·· ·
− δ pm

q2
ap1 p2···pm−2 pm−1

q1qm···qm−2qm−1

− δ pm
q1

ap1 p2···pm−2 pm−1
qmq2···qm−2qm−1 |α⟩

× np1np2 · · ·npm , (9)

where {npi} are the occupation numbers (0 or 1) in |α⟩. The
repeated use of Eq. (9) will lead to the final fully contracted
result.

Table 2 Degeneracy (nd) of low-order Feynman diagrams. nF2:
number of electron-field contractions between two different vertices
enumerated in an ascending order; nF1: number of electron-field
contractions within the same vertex; nP: number of possible
assignments of all the photon interactions;
nd = max(1,nF1 +2nF2)×max(1,nP).

Diagram nF2 nF1 nP nd nd/n!
Fig. 3(b) 0 0 1 1 1/2
Fig. 3(c) 0 0 1 1 1
Fig. 3(d) 1

2C2
4 +

1
2C2

4 0 1 12 1/2
Fig. 3(e) 1

2C2
4 +

1
2C2

4 0 1 12 1/2
Fig. 3(f) C2

3 0 1 6 1
Fig. 3(g) C2

3 0 1 6 1
Fig. 3(h) C2

2 0 0 2 1
Fig. 3(i) C2

4 0 2 24 1
Fig. 4(a) 0 0 0 1 1/2
Fig. 4(b) 0 0 1

2C2
4 3 1/8

Fig. 4(c) 0 0 C2
3 3 1/2

Fig. 5(a) C2
2 0 1 2 1

Fig. 5(b) 0 C1
2 1 2 1

Fig. 5(c) C2
3 0 1 6 1

Fig. 5(d) C2
4 0 2 24 1

With the above rules and the integral identities, the S(n) op-
erators (5) can readily be constructed for the diagrams in Figs.
(3) and (4). Although the enumeration of the vertices xi = r⃗it,
the ‘direction’ of the virtual photons zi, as well as the des-
ignation of the free orbital lines are completely arbitrary, the
following expressions follow the convention that, for a given
diagram, the vertices are enumerated in a clockwise and as-
cending order, the virtual photons are directed from the left
to right, while the outgoing (incoming) free orbital lines are
denoted as p,q, · · · (r,s, · · · ) from the left to right. In addi-
tion, the frequency ωi in the electron propagator goes always
upwards. These ‘directions’ are necessary just for calculating
the arguments Ei = Ein−Eout of the vertex 2π∆(Ei) functions.

Fig. (3b):

S(2) =
1
2
(S(2))rs

pq{apq
rs }n, (10)

(S(2))rs
pq =

∫ dz
2π ⟨pq|(−i)I(z;⃗r2 ,⃗r1)|rs⟩

× 2π∆γ(εr − εp − z)2π∆γ(εs − εq + z) (11)
→ −igrs

pq2π∆γ(εr + εs − εp − εq). (12)

Note that Eq. (11) holds for the full instantaneous and
retarded interactions, whereas Eq. (12), as indicated by
the arrow, is confined only for the instantaneous interac-
tion g(1,2) (cf. Eq. (5) in Ref.1). This assumption is
adopted throughout. The expectation value of S(2) over
the unperturbed electronic state |α⟩ reads

⟨α|S(2)|α⟩=
ḡi j

i j

2iγ
, (13)

which contributes to the first order energy (cf. Eq. (1)) as

E(1)
3b =

iγ
2
[2⟨α |S(2)|α⟩] = 1

2
(VHF)

i
i. (14)

Fig. (3c):

S(1) = (S(1))q
p{ap

q}n, (15)

(S(1))q
p = −i(−U)q

p2π∆γ(εq − εp), (16)

⟨α|S(1)|α⟩ =
2iU i

i
γ

, (17)

E(1)
3c =

iγ
2
⟨α|S(1)|α⟩=−U i

i . (18)

The sum of E(1)
3b and E(1)

3c leads to the full first order en-
ergy

E(1) = (
1
2

VHF −U)i
i, (19)

which agrees with Eq. (16) in Ref.1.

Fig. (3d):

S(4) =
1
2
(S(4))rs

pq{apq
rs }n, (20)
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(S(4))rs
pq =

∫ dz1
2π

∫ dz2
2π

∫ dω1
2π

∫ dω2
2π

× ⟨pq|(−i)I(z1 ;⃗r2 ,⃗r1)(−i)I(z2 ;⃗r3 ,⃗r4)

× iSF(ω1 ;⃗r1 ,⃗r4)iSF(ω2 ;⃗r2 ,⃗r3)|rs⟩
× 2π∆γ(εr − z2 −ω1)2π∆γ(z2 + εs −ω2)

× 2π∆γ(ω1 − εp − z1)2π∆γ(z1 +ω2 − εq)(21)

→
∫ dω1

2π
∫ dω2

2π ⟨pq|g(2,1)g(3,4)
× SF(ω1 ;⃗r1 ,⃗r4)SF(ω2 ;⃗r2 ,⃗r3)|rs⟩
× 2π∆2γ(εr + εs −ω1 −ω2)

× 2π∆2γ(εp + εq −ω1 −ω2) (22)

= gtu
pqgrs

tu
∫ dω1

2π
∫ dω2

2π
1

ω1−εt (1−iη)
1

ω2−εu(1−iη)

× 2π∆2γ(εr + εs −ω1 −ω2)

× 2π∆2γ(εp + εq −ω1 −ω2) (23)
= gtu

pqgrs
tuIL

22(εt ,εu;εr + εs,εp + εq,2γ), (24)

where the integral IL
22 is given in Eq. (117). From the

expectation value

⟨α|S(4)|α⟩= 1
2 gtu

i j ḡ
i j
tuIL

22(εt ,εu;εi + ε j,εi + ε j,2γ)(25)

=
gtu

i j ḡi j
tu

4iγ { Ltu
εi+ε j−εt−εu+2iγLtu

+ 2iγ|Ltu|
[εi+ε j−εt−εu+2iγLtu]2

} (26)

=
gtu

i j ḡi j
tu

4iγ { Ltu
εi+ε j−εt−εu

|εi+ε j ̸=εt+εu

+ 1
iγ |εi+ε j=εt+εu}, (27)

we obtain (cf. Eq. (2))

E(2)
L,γ = iγ

2 [4⟨α |S(4)|α⟩] (28)

= 1
4

ḡtu
i j ḡi j

tuLtu

εi+ε j−εt−εu
|εi+ε j ̸=εt+εu +

ḡi j
i j ḡ

i j
i j

2iγ , (29)

where the first term can further be split into

E(2)
L++ = 1

4
ḡab

i j ḡi j
ab

εi+ε j−εa−εb
, (30)

E(2)
L−− = − 1

4

ḡĩ j̃
i j ḡ

i j
ĩ j̃

εi+ε j−εĩ−εĩ
, (31)

E(2)
Lov =

ḡa j
i j ḡi j

a j
εi−εa

+ 1
2

ḡka
i j ḡi j

ka
εi+ε j−εk−εa

|i ̸= j ̸=k, (32)

E(2)
LOO = 1

8
ḡkl

i j ḡ
i j
kl

εi+ε j−εk−εl
+ 1

8
ḡi j

kl ḡ
kl
i j

εk+εl−εi−ε j
= 0. (33)

Fig. (3e):

S(4) =
1
2
(S(4))rs

pq{apq
rs }n, (34)

(S(4))rs
pq =

∫ dz1
2π

∫ dz2
2π

∫ dω1
2π

∫ dω2
2π

× ⟨pq|(−i)I(z1 ;⃗r2 ,⃗r4)(−i)I(z2 ;⃗r3 ,⃗r1)

× iSF(ω1 ;⃗r1 ,⃗r4)iSF(ω2 ;⃗r2 ,⃗r3)|rs⟩
× 2π∆γ(εr − z1 −ω1)2π∆γ(εs + z2 −ω2)

× 2π∆γ(ω1 − z2 − εp)2π∆γ(ω2 + z1 − εq)(35)

→
∫ dω1

2π
∫ dω2

2π ⟨pq|g(2,4)g(3,1)
× SF(ω1 ;⃗r1 ,⃗r4)SF(ω2 ;⃗r2 ,⃗r3)|rs⟩
× 2π∆2γ(εr − εq −ω1 +ω2)

× 2π∆2γ(εs − εp +ω1 −ω2) (36)

= gts
pugru

tq
∫ dω1

2π
∫ dω2

2π
1

ω1−εt (1−iη)
1

ω2−εu(1−iη)

× 2π∆2γ(εr − εq −ω1 +ω2)

× 2π∆2γ(εs − εp +ω1 −ω2) (37)
= gts

pugru
tq IX

22(εt ,εu;εq − εr,εs − εp,2γ), (38)

where the integral IX
22 is given in Eq. (118). From the

expectation value

⟨α|S(4)|α⟩= 1
2 gt j

iugiu
t jI

X
22(εt ,εu;ε j − εi,ε j − εi,2γ)

− 1
2 gti

iugu j
jt IX

22(εt ,εu;0,0,2γ) (39)

= 1
4iγ {

gt j
iugiu

t jXtu

ε j−εi+εt−εu
−

gti
iugu j

jt Xtu

εt−εu
}, (40)

we obtain (cf. Eq. (2))

E(2)
X = iγ

2 [4⟨α |S(4)|α⟩] (41)

= −
gp j

i j̃
gi j̃

p j
εi+ε j̃−ε j−εp

+
gpi

i j̃
g j̃ j

jp
ε j̃−εp

, (42)

where the summation over p includes all the occupied
and virtual PES. Note that E(2)

X vanishes for the same oc-
cupied orbitals (i.e., i = j).

Fig. (3f):

S(3) = (S(3))rs
pq{apq

rs }n, (43)

(S(3))rs
pq =

∫ dz
2π

∫ dω
2π ⟨pq|(−i)I(z;⃗r2 ,⃗r3)

× (−i)[−U (⃗r1)]iSF(ω ;⃗r1 ,⃗r2)|rs⟩
× 2π∆γ(εr − εp − z)2π∆γ(εs + z−ω)

× 2π∆γ(ω − εq)

→ i
∫ dω

2π ⟨pq|g(2,3)U(1)SF(ω ;⃗r1 ,⃗r2)|rs⟩
× 2π∆2γ(εr + εs − εp −ω)2π∆γ(εq −ω)(44)

= igrs
ptU

t
q
∫ dω

2π
1

ω−εt (1−iη)

× 2π∆2γ(εr + εs − εp −ω)2π∆γ(εq −ω)(45)
= igrs

ptU
t
qJ12(εt ;εq,εq,γ), (46)
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where use of the energy-conserving relation εr + εs −
εp = εq and the integral J12 (111) has been made. From
the expectation value

⟨α |S(3)|α⟩= iḡi j
it U

t
jJ12(εt ;ε j,ε j,γ) (47)

= iḡi j
it U

t
j{ 2

3γ
1

ε j−εt
| j ̸=t +

1
iγ2 | j=t}, (48)

we obtain (cf. Eq. (2))

E(2)
f ,γ =

iγ
2 [3⟨α |S(3)|α⟩] (49)

= − (VHF )
j
t U t

j
ε j−εt

| j ̸=t −
3ḡi j

i jU
j
j

2iγ . (50)

Fig. (3g):

The derivation is completely parallel to Fig. (3f), leading to

E(2)
g,γ = − (VHF )

t
jU

j
t

ε j−εt
| j ̸=t −

3ḡi j
i jU

j
j

2iγ . (51)

The sum of E(2)
f ,γ (50) and E(2)

g,γ (51) gives rise to

E(2)
f g,1+ = − (VHF )

a
jU

j
a+Ua

j (VHF )
j
a

ε j−εa
, (52)

E(2)
f g,1− = −

(VHF )
j̃
jU

j
j̃
+U j̃

j (VHF )
j
j̃

ε j−ε j̃
, (53)

E(2)
f g,γ = −

3ḡi j
i jU

j
j

iγ . (54)

Fig. (3h):

S(2) = (S(2))q
p{ap

q}n, (55)

(S(2))q
p =

∫ dω
2π ⟨p|(−i)[−U (⃗r1)](−i)[−U (⃗r2)]

× iSF(ω ;⃗r1 ,⃗r2)|q⟩
× 2π∆γ(εq −ω)2π∆γ(ω − εp)

→ −iU t
pUq

t
∫ dω

2π
1

ω−εt (1−iη)

× 2π∆γ(εp −ω)2π∆γ(εq −ω) (56)
= −iU t

pUq
t I12(εt ;εp,εq,γ), (57)

where the integral I12 is given in Eq. (109). From the
expectation value

⟨α|S(2)|α⟩= −iU t
jU

j
t I12(εt ;ε j,ε j,γ) (58)

=
U t

jU
j

t
iγ(ε j−εt )

| j ̸=t +
2U j

j U j
j

(iγ)2 | j=t , (59)

we obtain (cf. Eq. (2))

E(2)
h,γ =

iγ
2
[2⟨α |S(2)|α⟩] =

U t
jU

j
t

ε j − εt
| j ̸=t +

2U j
j U

j
j

iγ
, (60)

where the first term can further be split into two terms

E(2)
h,1+ =

Ua
j U j

a

ε j−εa
, (61)

E(2)
h,1− =

U j̃
j U j

j̃
ε j−ε j̃

. (62)

Fig. (3i):

S(4) = (S(4))i jk
pqr{apqr

i jk }n, i ̸= j ̸= k, (63)

where

(S(4))i jk
pqr =

∫ dz1
2π

∫ dz2
2π

∫ dω
2π ⟨pqr|(−i)I(z1 ;⃗r2 ,⃗r1)

× (−i)I(z2 ;⃗r3 ,⃗r4)iSF(ω ;⃗r2 ,⃗r4)|i jk⟩
× 2π∆γ(εi − εp − z1)2π∆γ(ε j − z2 −ω)

× 2π∆γ(εk + z2 − εr)2π∆γ(z1 +ω − εq)

→ −i
∫ dω

2π ⟨pqr|g(2,1)g(3,4)SF(ω ;⃗r2 ,⃗r4)|i jk⟩
× 2π∆2γ(εi − εp − εq +ω)

× 2π∆2γ(ε j + εk − εr −ω) (64)

= −igit
pqgk j

rt
∫ dω

2π
1

ω−εt (1−iη)

× 2π∆2γ(εp + εq − εi −ω)

× 2π∆2γ(ε j + εk − εr −ω) (65)

= −igit
pqgk j

rt

× I12(εt ;εp + εq − εi,ε j + εk − εr,2γ). (66)

From the expectation value (cf. Eq. (9))

⟨α |S(4)|α⟩= −i{ḡit
i jḡ

k j
kt I12(εt ;ε j,ε j,2γ)− 1

2 ḡit
k jḡ

k j
it

× I12(εt ;ε j + εk − εi,ε j + εk − εi,2γ)}(67)

=
ḡit

i j ḡ
k j
kt

2iγ [ 1
ε j−εt (1−2iγ) +

2iγ sgn(εt )
[ε j−εt (1−2iγ)]2 ]

−
ḡit

k j ḡ
k j
it

4iγ [ 1
ε j+εk−εi−εt (1−2iγ)

+ 2iγ sgn(εt )
[ε j+εk−εi−εt (1−2iγ)]2 ], i ̸= j ̸= k (68)

and the relation

∑
i ̸=k

ḡit
i jḡ

k j
kt = (VHF)

t
j(VHF)

t
j −∑

i
ḡit

i jḡ
i j
it , (69)

we obtain (cf. Eq. (2))

E(2)
3i,γ =

iγ
2 [4⟨α|S(4)|α⟩] (70)

= { (VHF )
t
i(VHF )

i
t

εi−εt
|i ̸=t −

ḡt j
i j ḡ

i j
t j

εi−εt
|i ̸=t

− 1
2

ḡkt
i j ḡ

i j
kt

εi+ε j−εk−εt
|i ̸= j ̸=k ̸=t}+

ḡi j
i j ḡ

ik
ik

iγ |i ̸= j ̸=k, (71)
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where the first term can further be split into

E(2)
3i,1+ =

(VHF)
a
i (VHF)

i
a

εi − εa
, (72)

E(2)
3iov = −

ḡa j
i j ḡi j

a j

εi − εa
− 1

2

ḡka
i j ḡi j

ka

εi + ε j − εk − εa
|i ̸= j ̸=k(73)

= −E(2)
Lov, (74)

E(2)
3i,1− =

(VHF)
ĩ
i(VHF)

i
ĩ

εi − εĩ
−

ḡĩ j
i jḡ

i j
ĩ j

εi − εĩ
, (75)

E(2)
3i,2− = −1

2

ḡkĩ
i j ḡ

i j
kĩ

εi + ε j − εk − εĩ
|i ̸= j ̸=k. (76)

Note that the term E(2)
3iov (74) will cancel the term E(2)

Lov in
Eq. (32).

Fig. (4a):

S(2) =
1
2
(S(2))rs

pq{apq
rs }n, (77)

(S(4))rs
pq = ⟨pq|(−i)[−U (⃗r1)](−i)[−U (⃗r2)]|rs⟩

× 2π∆γ(εr − εp)2π∆γ(εs − εq)

= −U r
pU s

q2π∆γ(εr − εp)2π∆γ(εs − εq), (78)

From the expectation value

⟨α|S(2)|α⟩= 1
2{−U i

i U
j
j [2π∆γ(0)]2

+U j
i U i

j[2π∆γ(εi − ε j)]
2}|i ̸= j, (79)

we obtain (cf. Eq. (2))

E(2)
4a,γ =

iγ
2 [2⟨α |S(2)|α⟩] (80)

=
2U i

i U
j
j

iγ |i ̸= j, (81)

because the second term of Eq. (79) vanishes in the limit
γ → 0.

Fig. (4b):

S(4) =
1
8
(S(4))rsvw

pqtu{apqtu
rsvw}n. (82)

A direct evaluation of this diagram according to Eq. (82)
is possible but is very lengthy. As observed in Fig. (4a),
the transitions between the disconnected parts of a dis-
connected diagram all vanish in the limit γ → 0. That
is, the disconnected parts can be treated as infinitely sep-
arated in space and time. Therefore, the expectation of

S(4) (82) can be factorized as

⟨α |S(4)|α⟩= 1
8 (S

(2)
L )rs

pq⟨α|{ars
pq}n|α⟩

× (S(2)R )vw
tu ⟨α|{avw

tu }n|α⟩, (83)

= 1
2 ⟨α|S(2)L |α⟩⟨α |S(2)R |α⟩ (84)

= 1
2

ḡi j
i j

2iγ
ḡkl

kl
2iγ |i ̸= j ̸=k ̸=l , (85)

where use of the expression (13) has been made for both
the left (S(2)L ) and right (S(2)R ) parts of the diagram. We
then obtain (cf. Eq. (2))

E(2)
4b,γ =

iγ
2 [4⟨α |S(4)|α⟩] (86)

=
ḡi j

i j ḡ
kl
kl

4iγ |i ̸= j ̸=k ̸=l . (87)

Fig. (4c):

S(3) =
1
2
(S(3))rsu

pqt{apqt
rsu}n. (88)

Like Fig. (4b), the expectation value of S(3) (88) can be
factorized as

⟨α |S(3)|α⟩= ⟨α |S(2)L |α⟩⟨α |S(1)R |α⟩ (89)

=
ḡi j

i j
2iγ

2iUk
k

γ |i ̸= j ̸=k, (90)

where use of the expressions (13) and (17) has been made
for the left (S(2)L ) and right (S(1)R ) parts of the diagram. We
then obtain (cf. Eq. (2))

E(2)
4c,γ =

iγ
2 [3⟨α|S(3)|α⟩] (91)

= − 3
2iγ ḡi j

i jU
k
k |i ̸= j ̸=k. (92)

Some remarks on the γ−1-type of divergent terms should now
be made. Note first that the second term in Eq. (60) can only
be canceled out by the sum of Eq. (81) and the following term
(cf. Eqs. (1) and (17))

iγ
2
[−⟨α |S(1)|α⟩2] =−

2U i
i U

j
j

iγ
=−

2U j
j U

j
j

iγ
−

2U i
i U

j
j

iγ
|i ̸= j. (93)

Likewise, the divergent term (54) can only be canceled out by
the sum of Eq. (92) and the following term (cf. Eqs. (2), (13)
and (17))

iγ
2
[−3⟨α |S(1)|α⟩⟨α|S(2)|α⟩] =

3ḡi j
i jU

j
j

iγ
|i ̸= j +

3ḡi j
i jU

k
k

2iγ
|i ̸= j ̸=k. (94)

Similarly, the second terms of Eqs. (29) and (71) together can
only be canceled out by the sum of Eq. (87) and the following
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term (cf. Eqs. (2) and (13))

iγ
2
[−2⟨α |S(2)|α⟩2] = −

ḡi j
i j ḡ

kl
kl

4iγ |i ̸= j,k ̸=l (95)

= −
ḡi j

i j ḡ
i j
i j

2iγ |i ̸= j −
ḡi j

i j ḡ
kl
kl

iγ |i ̸= j ̸=k

−
ḡi j

i j ḡ
kl
kl

4iγ |i ̸= j ̸=k ̸=l . (96)

It is therefore clear that the disconnected but linked diagrams
in Fig. (4) are essential for removing the γ−1-type of diver-
gences from Fig. (3), although they do not contribute to the
energy. Of course, Fig. (4b) appears only for systems of more
than three electrons, whereas Fig. (4c) (and (3i)) only for sys-
tems of more than two electrons. The final two-body terms
of E(2) include Eqs. (30), (31), (42), and (76), while the one-
body terms in Eqs. (52), (53), (61), (62), (72), and (75) can be
regrouped into

E(2)
QED,1+ =

(VHF −U)a
i (VHF −U)i

a

εi − εa
= E(2)

CS,1+, (97)

E(2)
QED,1− =

(VHF −U)ĩ
i(VHF −U)i

ĩ
εi − εĩ

−
ḡĩ j

i jḡ
i j
ĩ j

εi − εĩ
(98)

= E(2)
CS,1−−

ḡĩ j
i jḡ

i j
ĩ j

εi − εĩ
. (99)

Note in passing that, at variance with the above complete ma-
nipulations, the same results can alternatively be obtained by
discarding the singular terms from the outset, including the
terms with a negative sign in Eqs. (1) and (2), the last terms in
the integrals (109), (110), (111), (117), and (118), as well as
all the diagrams in Fig. (4). It is this ‘shortcut’ that is usually
employed in the literature3. Retaining only the terms in Eqs.
(30) and (97) goes back to the standard no-pair approximation
that has an intrinsic error of order (Zα)3 and is dependent on
the mean-field potential generating the orbitals. Fortunately,
such an error as well as the potential dependence can largely
be removed by further accounting for the simple counter terms
(53) and (62), leading to a ‘potential-independent (hybrid) no-
pair approximation’.

The algebraic equations for the diagrams in Fig. (5) can in
principle be derived in the same way. However, they require
delicate regularization and renormalization that go beyond the
scope of the present work. The results are therefore not to
be documented here. Yet, we can discuss briefly the vacuum

density ρvp

ρvp(⃗r) = i|e|Tr[SF(x1,x2)] (100)

=
|e|
2
(ρ+(⃗r)−ρ−(⃗r)), (101)

ρ+(⃗r) = ∑
i

φ†
i (⃗r)φi(⃗r), (102)

ρ−(⃗r) = ∑̃
i

φ†
ĩ (⃗r)φĩ(⃗r), (103)

where Eq. (101) arises from the equal-time electron propa-
gator (see Eq. (112)) and the summations in Eqs. (102) and
(103) involve the whole PES and NES, respectively. Obvi-
ously, ρvp(⃗r) vanishes pointwise for free particles. However,
in the presence of a pointlike nucleus, the induced charge den-
sity ρvp has a profound feature4: The PES are occupied by
positrons e+, while the NES are occupied by electrons e−;
Since the positive energy functions φi are pulled closer to the
nucleus by the Coulomb field, whereas the negative energy
functions φĩ are pushed away from the nucleus, the induced
charge density ρvp has a positively charged part localized at
the position of the nucleus and a negatively charged polariza-
tion cloud marginally spread out from the nucleus, in accor-
dance with the condition Qvp =

∫
ρvp(⃗r)d⃗r = 0. That is, the

dipole moments of e+e− pairs are oriented with e+ closer to
the nucleus. This is completely opposite to an ordinary polar-
izable medium, where positive and negative charges are usu-
ally alternating. Since the radial extension of ρvp is extremely
short ranged (in the order of h̄/mc ≈ 386 fm), the vacuum
polarization can effectively be visualized as an enlargement
of the nucleus charge and thereby behaves as an attractive
force. Note that this pictorial interpretation is independent of
the charge renormalization.

B Useful integrals

We first define3

∫ +∞

−∞
dteiωte−γ|t| =

2γ
ω2 + γ2 = 2π∆γ(ω), (104)

where ∆γ(ω) is an even function of ω and has the following
properties

lim
γ→0

∆γ(ω) = δ (ω), (105)

lim
γ→0

πγ∆γ(ω) = δ ω
0 , (106)

∫ +∞

−∞

dω
2π

2π∆α(a−ω)2π∆β (b+ω) = 2π∆α+β (a+b).(107)
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The integral I11 with one electron propagator and one ∆ func-
tion reads

I11(εt ;a,γ) =
∫ +∞

−∞

dω
2π

1
ω − εt(1− iη)

2π∆γ(a−ω)

=
1

a− εt(1− iγ)
, (108)

where η is an infinitesimally positive number, whereas γ is a
small but finite positive number (i.e., η + γ ≈ γ). The integral
I12 with one electron propagator and two ∆ functions reads

I12(εt ;a,b,γ) =
∫ +∞
−∞

dω
2π

1
ω−εt (1−iη)2π∆γ(a−ω)2π∆γ(b−ω)

= 2π∆2γ(a−b){ 1
2[a−εt (1−iγ)] +

1
2[b−εt (1−iγ)]

+ iγ sgn(εt )
[a−εt (1−iγ)][b−εt (1−iγ)]}, (109)

which reduces to

I12(εt ;a,a,γ) =
γ−1

a− εt(1− iγ)
+

isgn(εt)

[a− εt(1− iγ)]2
(110)

in the case of a = b. Likewise,

J12(εt ;a,a,γ) =
∫ +∞
−∞

dω
2π

1
ω−εt (1−iη)2π∆γ(a−ω)2π∆2γ(a−ω)

= 2
3γ {

2
a−εt (1−iγ) −

1
a−εt (1−2iγ)}

=

{
2
3γ

1
a−εt

, if a ̸= εt ,
1

iγ2 sgn(εt )
, if a = εt .

(111)

Further in view of the identities

I10(a,εt) =
∫ +∞

−∞

dω
2π

1
a±ω − εt(1− iη)

=
1
2i

sgn(εt), (112)

IL
20(a,εt ,b,εu) =

∫+∞
−∞

dω
2π

1
a∓ω−εt (1−iη)

1
b±ω−εu(1−iδ )

= −iLtu
[a−εt (1−iη)]+[b−εu(1−iδ )] (113)

with

Ltu = L++ =−L−− = 1, Ltu = L+− = L−+ = 0, (114)

and

IX
20(a,εt ,b,εu) =

∫+∞
−∞

dω
2π

1
a±ω−εt (1−iη)

1
b±ω−εu(1−iδ )

= iXtu
[a−εt (1−iη)]−[b−εu(1−iδ )] (115)

with

Xtu = X++ = X−− = 0, Xtu = X+− =−X−+ = 1, (116)

the integrals with two ∆ functions and two electron propaga-
tors can readily be evaluated as

IL
22(εt ,εu;a,b,γ) =

∫ +∞
−∞

∫ +∞
−∞

dω1
2π

dω2
2π

1
ω1−εt (1−iη)

1
ω2−εu(1−iη)

×2π∆γ(a−ω1 −ω2)2π∆γ(b−ω1 −ω2)

= 2π∆2γ(a−b){ Ltu
2i[a−εt−εu+iγLtu]

+ Ltu
2i[b−εt−εu+iγLtu]

+ γ |Ltu|
[a−εt−εu+iγLtu][b−εt−εu+iγLtu]

}, (117)

IX
22(εt ,εu;a,b,γ) =

∫ +∞
−∞

∫ +∞
−∞

dω1
2π

dω2
2π

1
ω1−εt (1−iη)

1
ω2−εu(1−iη)

×2π∆γ(a+ω1 −ω2)2π∆γ(b+ω1 −ω2)

= 2π∆2γ(a−b){ Xtu
2i[a+εt−εu−iγXtu]

+ Xtu
2i[b+εt−εu−iγXtu]

− γ|Xtu|
[a+εt−εu−iγXtu][b+εt−εu−iγXtu]

}, (118)

IY
22(εt ,εu;a,b,γ) =

∫ +∞
−∞

∫ +∞
−∞

dω1
2π

dω2
2π

1
ω1−εt (1−iη)

1
ω2−εu(1−iη)

×2π∆γ(a−ω1 +ω2)2π∆γ(b+ω1 −ω2)

= IX
22(εt ,εu;−a,b,γ). (119)
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