Electronic Supplementary Information

Role of aromaticity and charge of a system in its hydrogen trapping potential and vice-versa

Santanab Giri, Sateesh Bandaru, Arindam Chakraborty and Pratim K Chattaraj*

Department of Chemistry and Center for Theoretical Studies Indian Institute of Technology, Kharagpur - 721302, India E-mail- <u>pkc@chem.iitkgp.ernet.in</u>

Table S1: Total energy (au) of different C_nH_n (n = 4-6) and H_2 trapped C_nLi_n (n = 4-6) systems computed at different levels of theory and basis sets.

	Energy (au)												
Systems	B3L	.YP	M05	-2X	MPV	MPW1K							
Systems	6-311+G(d,p)	aug-cc-pvdz	6-311+G(d,p)	aug-cc-pvdz	6-311+G(d,p)	aug-cc-pvdz							
C_4H_4	-154.72116	-154.69533	-154.69134	-154.67269	-154.66702	-154.64721							
C ₄ Li ₄	-182.39114	-182.36900	-182.36773	-182.35121	-182.28826	-182.26906							
$4H_2@C_4Li_4$	-18/.12064	-187.08285	-18/.05///	-18/.02033	-187.00024	*							
$8H_2@C_4L1_4$	-191.84398	-191./9338	-191./51/2	-191.09455	-191./1124	-191.0/080							
C5H5-	-193.58078	-193.55065	-193.55230	-193.52929	-193.51847	-193.49485							
C5Li5-	-228.09749	-228.07162	-228.07460	-228.05623	-227.96914	-227.94694							
5H2@C5Li5-	-234.00354	-233.95852	-233.93357	-@-	*	*							
C ₆ H ₆	-232.31125	-232.27461	-232.27526	-232.24827	-232.23809	-232.20942							
C_6Li_6	-273.77263	-273.74093	-273.74214	-273.72080	-273.62834	-273.60121							
6H2@C6Li6	-280.87235	-280.81733	-280.77844	-280.73071	-280.69961	-280.65531							
$12H_2@C_6Li_6$	-287.96195	-287.88444	*	*	-@-	-@-							

* Convergence at some saddle point (NIMAG > 0). So, values not reported

-@- no convergence achieved

Table S2: The total energy (E, au) and the enthalpies (E_H , Kcal mol⁻¹) of the Li⁺/F⁻ bound annular hydrocarbon rings and their associated H₂-bound complexes computed at MP2 level of theory using 6-31+G(d) basis set.

	Systems	E	E _H		Systems	E	E _H
1	C ₃ H ₃ Li	-123.0503945	-123.000220	50	Anthra-m- $C_{14}H_{10}Li_2^{2+}$	-552.2698703	-552.060425
2	$1H_2@C_3H_3Li$	-124.1986325	-124.132550	51	$2H_2@m-C_{14}H_{10}Li_2^{2+}$	-554.5742495	-554.332920
3	$2H_2@C_3H_3Li$	-125.3453170	-125.263640	52	$4H_2@m-C_{14}H_{10}Li_2^{2+}$	-556.8775413	-556.604772
4	$3H_2@C_3H_3Li$	-126.4900227	-126.393190	53	$6H_2@m-C_{14}H_{10}Li_2^{2+}$	-559.1757792	-558.871207
5	4H ₂ @C ₃ H ₃ Li	-127.6347506	-127.522775	54	$8H_2@m-C_{14}H_{10}Li_2^{2+}$	-561.4673621	-561.133133
6	$C_4H_4Li^+$	-161.4395824	-161.370164	55	Anthra-t- $C_{14}H_{10}Li_2^{2+}$	-552.2967414	-552.086382
7	$1H_2@C_4H_4Li^+$	-162.5903638	-162.505130	56	$4H_2@ t-C_{14}H_{10}Li_2^{2+}$	-556.8990673	-556.625835
8	$2H_2@C_4H_4Li^+$	-163.7398564	-163.638906	57	$6H_2@ t-C_{14}H_{10}Li_2^{2+}$	-559.1953094	-558.890858
9	$3H_2@C_4H_4Li^+$	-164.8869800	-164.770495	58	$8H_2@ t-C_{14}H_{10}Li_2^{2+}$	-561.4880447	-561.153329
10	$4H_2@C_4H_4Li^+$	-166.0329439	-165.901058				
11	C ₅ H ₅ Li	-200.3738976	-200.284035	59	Anthra-st- $C_{14}H_{10}Li_2^{2+}$	-552.2812479	-552.071418
12	$1H_2@C_5H_5Li$	-201.5223528	-201.416719	60	$2H_2@$ st-C ₁₄ H ₁₀ Li ₂ ²⁺	-554.5847937	-554.343290
13	$2H_2@C_5H_5Li$	-202.6674837	-202.546435	61	$4H_2@ st-C_{14}H_{10}Li_2^{2+}$	-556.8863964	-556.613492
14	$3H_2@C_5H_5Li$	-203.8122636	-203.676105	62	$6H_2@$ st-C ₁₄ H ₁₀ Li ₂ ²⁺	-559.183608	-558.879168
15	$4H_2@C_5H_5Li$	-204.957005	-204.805742				
16	C II I ; +	207 7022020	207 (00212	(2)	DI C II I'+	545 110115	544.001.450
16	$C_5H_5L_{12}$	-207.7023829	-207.608312	63	Phenan- $C_{14}H_{10}L_1$	-545.110115	-544.901450
1/	$4H_2@C_5H_5L1_2$	-212.2972074	-212.140193	64	$1H_2@C_{14}H_{10}L1$	-546.2609465	-546.036396
18	$6H_2@C_5H_5Ll_2$	-214.5889014	-214.401161	65	$2H_2@C_{14}H_{10}L1$	-54/.41093/5	-547.170545
19	$\delta H_2 @C_5 H_5 Ll_2$	-210.8/8113	-210.000499	00	$3H_2 @C_{14}H_{10}Ll$	-348.3383931	-348.302012
20	C4H4Li ⁺	-238.7692623	-238.658866	67	Phenan-rl-C14H10Li ⁺	-545,1114417	-544.902305
21	1H2@ C6H6Li ⁺	-239.9195616	-239.793424	68	$2H_2@ rl-C_{14}H_{10}Li^+$	-547.4107241	-547.170028
22	$2H_2@C_6H_6Li^+$	-241.143542	-241.002538	69	$3H_2@ rl-C_{14}H_{10}Li^+$	-548.5580808	-548.302093
23	$3H_2@C_6H_6Li^+$	-242.214249	-242.057052				
24	$4H_2@C_6H_6Li^+$	-243.3591543	-243.186883				
25	$C_6H_6Li_2^{2+}$	-245.9150026	-245.801923	70	Phenan-m- $C_{14}H_{10}Li_2^{2+}$	-552.2813458	-552.070054
26	$2H_2@C_6H_6Li_2^{2+}$	-248.2193707	-248.074788	71	$6H_2@m-C_{14}H_{10}Li_2^{2+}$	-559.187252	-558.881520
27	$4H_2@C_6H_6Li_2^{2+}$	-250.5206404	-250.344677	72	$8H_2@m-C_{14}H_{10}Li_2^{2+}$	-561.4779842	-561.141672
28	$6H_2@C_6H_6Li_2^{2+}$	-252.8192048	-252.612081	73			
29	$8H_2@C_6H_6Li_2^{2+}$	-255.1127663	-254.875153				
20	о III;+	201.0292925	201 770042	74		550 070(259	552.0(9212
30	$C_{10}H_8L1$	-391.9382825	-391.779043	/4	Phenan-r1- $C_{14}H_{10}L_{12}^{-1}$	-552.2796358	-552.068213
22	$\frac{1H_2 @C_{10}H_8L1}{2U @C_{10}H_8L1}$	-393.0889221	-392.914402	13	$4H_2 @ rI - C_{14}H_{10}L_{12}$	-330.8800348	-550.011141
32	$2H_2 @C_{10}H_8LI$	-394.2378830	-394.04/080	70	$0\Pi_2 @ rI - C_{14}\Pi_{10}LI_2$	-339.1842837	-338.878321
30	$3\Pi_2 @C_{10}\Pi_8 LI$	-395.3840103	306 308080	11	$\delta \Pi_2 @ r_1 - C_{14} \Pi_{10} L_{12}$	-301.4/4034/	-301.138309
54	4112@C10118L1	-390.3297102	-390.308980				
35	CioHoLio ²⁺	-399 1096521	-398 947768	78	Phenan-t-C14H10Lio ²⁺	-552 3056535	-552 094224
36	$2H_2@C_{10}H_9L_{12}^{2+}$	-401.4133682	-401.219921	79	$4H_2@$ t-C ₁₄ H ₁₀ Li ²⁺	-556.9083448	-556.633470
37	$4H_2@C_{10}H_9Li_2^{2+}$	-403.71412	-403.489341	80	$6H_2@$ t-C ₁₄ H ₁₀ Li ₂ ²⁺	-559.204734	-558.898801
38	$6H_2@C_{10}H_9Li_2^{2+}$	-406.0116225	-405.755734	81	$8H_2@ t-C_{14}H_{10}Li_2^{2+}$	-561.4971229	-561.161216
39	$8H_2@C_{10}H_8Li_2^{2+}$	-408.303282	-408.016991		2		
	2 10 -02			1			
		1	1	1	I	1	

40	Anthra-C ₁₄ H ₁₀ Li ⁺	-545.0998894	-544.892549	82	Phenan-cis- $C_{14}H_{10}Li_2^{2+}$	-552.2994747	-552.088649
41	$1H_2@C_{14}H_{10}Li^+$	-546.2506985	-546.027391	83	$2H_2@\ cis-C_{14}H_{10}Li_2^{2+}$	-554.6021393	-554.359779
42	$2H_2@C_{14}H_{10}Li^+$	-547.400848	-547.161816	84	$4H_2@\ cis-C_{14}H_{10}Li_2^{2+}$	-556.9013845	-556.627518
43	$3H_2@C_{14}H_{10}Li^+$	-548.547978	-548.293257	85	$6H_2@\ cis-C_{14}H_{10}Li_2^{2+}$	-559.1968724	-558.891950
44	$4H_2@C_{14}H_{10}Li^+$	-549.6920701	-549.422796	86	$8H_2@\ cis-C_{14}H_{10}Li_2^{2+}$	-561.4881316	-561.151847
45	Anthra-r1-C ₁₄ H ₁₀ Li ⁺	-545.1008472	-544.892598	87	C ₇ H ₇ F	-369.6187953	-369.489799
46	$1H_2@ rl-C_{14}H_{10}Li^+$	-546.2514629	-546.027355	88	$1H_2@C_7H_7F$	-370.7640706	-370.619853
47	2H ₂ @ <i>r1</i> -C ₁₄ H ₁₀ Li ⁺	-547.4004233	-547.160596	89	$2H_2@C_7H_7F$	-371.9091408	-371.749664
48	$3H_2@ rl-C_{14}H_{10}Li^+$	-548.5472765	-548.291983	90	$3H_2@C_7H_7F$	-373.0541931	-372.879539
49	$4H_2@ rl-C_{14}H_{10}Li^+$	-549.6923478	-549.422023	91	$4H_2@C_7H_7F$	-374.1994528	-374.009591

m- Metals placed on the middle ring (above and below), *t*- metal placed on the trans positions, st – metal placed on the trans to adjacent rings, *cis*- metal placed in the *cis* positions (1 and 3 rings).

Table S3: The electronegativity (χ) , hardness (η) and electrophilicity (ω) NICS(0), NICS(0.5) and NICS(1.0), charge on the metal ion $(q_M, NPA \text{ charge})$ of cyclobutadiene-Li⁺(C₄H₄Li⁺) and their H₂-bound analogues computed at MP2 level of theory using 6-31+G(d) basis set.

System	χ	η	ω	NICS(0)	NICS(0.5)	NICS(1.0)	$\mathbf{q}_{\mathbf{M}}$
$C_4H_4Li^+$	9.387	8.566	5.144	27.01	28.05	16.91	0.919
$1H_2@C_4H_4Li^+$	9.314	8.525	5.088	27.25	28.04	16.91	0.852
$2H_2@C_4H_4Li^+$	9.182	8.592	4.906	26.18	26.81	16.23	0.753
$3H_2@C_4H_4Li^+$	9.033	8.568	4.762	26.25	26.82	16.19	0.688
$4H_2@C_4H_4Li^+$	8.895	8.625	4.587	24.712	25.08	15.16	0.616

Table S4: The electronegativity (χ), hardness (η) and electrophilicity (ω) NICS(0), NICS(0.5) and NICS(1.0), charge on the metal ion (q_M , NPA charge) of C₅H₅Li, C₅H₅Li₂⁺ and their H₂-bound analogues computed at MP2 level of theory using 6-31+G(d) basis set.

System	χ	η	ω	NICS(0)	NICS(0.5)	NICS(1.0)	$\mathbf{q}_{\mathbf{M}}$
C ₅ H ₅ Li	4.028	7.877	1.030	-14.88	-13.77	-10.82	0.730
$1H_2@C_5H_5Li$	3.937	8.270	0.937	-15.46	-14.21	-10.94	0.620
$2H_2@C_5H_5Li$	3.788	8.061	0.890	-15.14	-13.91	-10.75	0.580
$3H_2@C_5H_5Li$	3.766	8.089	0.877	-15.12	-13.91	-10.78	0.579
$4H_2@C_5H_5Li$	3.731	8.146	0.855	-15.11	-13.85	-10.72	0.579
$C_5H_5Li_2^+$	8.470	10.311	3.479	-15.46	-16.41	-15.76	0.887,0.887
$4H_2@C_5H_5Li_2^+$	7.392	11.471	2.382	-15.55	-16.43	-15.62	0.718,0.718
$6H_2@C_5H_5Li_2^+$	7.331	11.505	2.336	-15.15	-15.94	-15.12	0.648,0.648
$8H_2@C_5H_5Li_2^+$	7.450	11.012	2.520	-15.32	-16.24	-15.58	0.689,0.689

System	χ	η	ω	NICS(0)	NICS(0.5)	NICS(1.0)	$\mathbf{q}_{\mathbf{M}}$
$C_6H_6Li^+$	9.351	11.201	3.904	-7.83	-9.93	-10.17	0.889
$1H_2@C_6H_6Li^+$	8.907	11.926	3.326	-8.00	-10.06	-10.24	0.802
$3H_2@C_6H_6Li^+$	8.739	11.781	3.242	-7.778	-9.94	-10.19	0.648
$4H_2@C_6H_6Li^+$	8.729	11.738	3.246	-7.761	-9.92	-10.18	0.645
$C_6H_6Li_2^{2+}$	13.385	11.897	7.529	-6.49	-8.99	-11.01	0.963,0.963
$2H_2@C_6H_6Li_2^{2+}$	13.300	12.001	7.369	-6.75	-9.28	-11.30	0.911,0.910
$4H_2@C_6H_6Li_2^{2+}$	13.120	11.876	7.247	-6.77	-9.27	-11.22	0.835,0.83
$6H_2@C_6H_6Li_2^{2+}$	13.562	13.096	7.022	-6.59	-8.98	-10.86	0.751,0.75
$8H_2@C_6H_6Li_2^{2+}$	11.836	11.026	6.353	-7.29	-9.55	-10.73	0.737,0.73

Table S5: The electronegativity (χ), hardness (η) and electrophilicity (ω) NICS(0), NICS(0.5) and NICS(1.0), charge on the metal ion (q_M , NPA charge) of $C_6H_6Li^+$, $C_6H_6Li_2^{2+}$ and their H₂-bound analogues computed at MP2 level of theory using 6-31+G(d) basis set.

Table S6: The electronegativity (χ), hardness (η) and electrophilicity (ω) NICS(0), NICS(0.5) and NICS(1.0), charge on the metal ion (q_M , NPA charge) of $C_{10}H_8Li^+$, $t-C_{10}H_8Li_2^{2+}$ and their H₂-bound analogues computed at MP2 level of theory using 6-31+G(d) basis set.

System	χ	η	ω	NICS(0)	NICS(0.5)	NICS(1.0)	$\mathbf{q}_{\mathbf{M}}$
$C_{10}H_8Li^+$	8.137	9.043	3.661	-8.33	-10.25	-10.19	0.897
$1H_2@C_{10}H_8Li^+$	8.033	9.159	3.523	-8.494	-10.25	-10.28	0.816
$2H_2@C_{10}H_8Li^+$	7.990	9.127	3.497	-8.472	-10.23	-10.26	0.729
$3H_2@C_{10}H_8Li^+$	7.928	9.115	3.448	-8.437	-10.27	-10.15	0.653
$4H_2@C_{10}H_8Li^+$	7.912	9.129	3.429	-8.358	-10.27	-10.20	0.644
$C_{10}H_8Li_2^{2+}$	12.137	9.229	7.981	-7.56, -7.55	-9.81, -9.81	-10.26, -10.26	0.949,0.949
$2H_2@C_{10}H_8Li_2^{2+}$	12.032	9.219	7.852	-7.74 -7.74	-9.98, -10.39	-9.98, -10.39	0.885,0.885
$4H_2@C_{10}H_8Li_2^{2+}$	11.940	9.203	7.746	-7.89, -7.88	-10.12, -10.12	-10.53, -10.53	0.802,0.802
$6H_2@C_{10}H_8Li_2^{2+}$	11.693	9.158	7.464	-7.72, -7.52	-9.83, -10.35	-10.53, -10.41	0.725,0.725
$8H_2@C_{10}H_8Li_2^{2+}$	11.037	9.074	6.712	-7.97, -7.97	-10.23, -10.23	-10.66, -10.66	0.698,0.698
· M 1 . 1 1							

t- Metal placed at the trans positions

Table S7: The electronegativity (χ), hardness (η) and electrophilicity (ω) NICS(0), NICS(0.5) and NICS(1.0), and charge on the metal ion (q_M , NPA charge) of *m*-Anthracene ($C_{14}H_{10}Li^+$), *r1*- $C_{14}H_{10}Li^+$ and their H₂-bound analogues computed at MP2 level of theory using 6-31+G(d) basis set.

System	χ	η	ω	NICS(0)	NICS(0.5)	NICS(1.0)	$\mathbf{q}_{\mathbf{M}}$
$m-C_{14}H_{10}Li^+$	7.806	7.841	3.886	-10.956	-12.62	-12.15	0.906
$1H_2@C_{14}H_{10}Li^+$	7.778	7.837	3.860	-11.094	-12.68	-12.16	0.829
$2H_2@C_{14}H_{10}Li^+$	7.756	7.823	3.845	-11.099	-11.82	-11.77	0.731
$3H_2@C_{14}H_{10}Li^+$	7.713	7.833	3.798	-11.064	-11.86	-11.83	0.649
$4H_2@C_{14}H_{10}Li^+$	7.670	7.822	3.761	-11.075	-12.83	-12.28	0.622
$rl - C_{14}H_{10}Li^+$	7.526	7.572	3.740	-7.143	-8.92	-9.19	0.893
$1H_2@C_{14}H_{10}Li^+$	7.502	7.565	3.719	-7.296	-8.99	-9.21	0.812
$2H_2@C_{14}H_{10}Li^+$	7.462	7.553	3.686	-7.300	-8.99	-9.20	0.725

$3H_2@C_{14}H_{10}Li^+$	7.417	7.552	3.642	-7.198	-8.95	-9.18	0.641
$4H_2@C_{14}H_{10}Li^+$	7.410	7.535	3.643	-7.346	-9.10	-9.30	0.647

m- Metal placed on the middle ring rl- metal placed on the first ring

Table S8: The electronegativity (χ), hardness (η) and electrophilicity (ω) NICS(0), NICS(0.5) and NICS(1.0) and charge on the metal ion (q_M , NPA charge) of *m*-Anthracene (*m*-C₁₄H₁₀Li₂²⁺), *t*-C₁₄H₁₀Li₂²⁺, *st*-C₁₄H₁₀Li₂²⁺ and their H₂-bound analogues computed at MP2 level of theory using 6-31+G(d) basis set.

System	χ	η	ω	NICS(0)	NICS(0.5)	NICS(1.0)	$\mathbf{q}_{\mathbf{M}}$
$m-C_{14}H_{10}Li_2^{2+}$	11.671	7.713	8.830	-9.786	-11.96	-13.10	0.948,0.949
$2H_2@C_{14}H_{10}Li_2^{2+}$	11.592	7.685	8.743	-10.084	-12.31	-13.46	0.897,0.897
$4H_2@C_{14}H_{10}Li_2^{2+}$	11.505	7.644	8.658	-9.9637	-12.22	-13.44	0.813,0.813
$6H_2@C_{14}H_{10}Li_2^{2+}$	11.351	7.640	8.433	-10.157	-12.30	-13.33	0.718,0.718
$8H_2@C_{14}H_{10}Li_2^{2+}$	11.197	7.588	8.261	-10.044	-12.033	-12.96	0.680,0.680
$t-C_{14}H_{10}Li_2^{2+}$	11.178	7.607	8.213	-7.22, -7.24	-9.61, -10.14	-9.44, -10.05	0.925,0.925
$2H_2@C_{14}H_{10}Li_2^{2+}$	11.081	7.728	7.944	-7.36, -7.37	-9.50, -9.64	-9.99, -10.08	0.879,0.861
$4H_2@C_{14}H_{10}Li_2^{2+}$	10.939	7.725	7.746	-7.36, -7.37	-9.63, -9.63	-9.98, -9.98	0.767,0.767
$6H_2@C_{14}H_{10}Li_2^{2+}$	11.157	8.111	7.673	-8.28, -8.28	-10.24, -10.24	-10.32, 10.33	0.681,0.758
$8H_2@C_{14}H_{10}Li_2^{2+}$	11.139	8.090	7.668	-7.33, -7.33	-9.69, -9.68	-10.08, -10.09	0.680,0.756
$st-C_{14}H_{10}Li_2^{2+}$	11.378	7.485	8.647	-10.25, -6.11	-12.12, -11.94	-8.17, -8.76	0.941,0.941
$1H_2@C_{14}H_{10}Li_2^{2+}$	11.302	7.482	8.535	-10.48, -6.28	-12.35, -8.32	-8.89, -12.07	0.875,0.875
$2H_2@C_{14}H_{10}Li_2^{2+}$	11.221	7.474	8.423	-10.66, -6.49	-12.51, -8.58	-9.14, -12.29	0.789,0.789
$3H_2@C_{14}H_{10}Li_2^{2+}$	11.068	7.489	8.178	-10.53, -12.39	-8.56, -6.48	-9.12, -12.18	0.703,0.703
$4H_2@C_{14}H_{10}Li_2^{2+}$	10.739	7.476	7.713	-10.78, -6.43	-8.61, -12.82	-9.35, -12.51	0.775,0.658

m- Metals placed on the middle ring (above and below), *t*- metal placed on the trans positions, st – metal placed on the trans to adjacent rings

Table S9: The electronegativity (χ), hardness (η) and electrophilicity (ω) NICS(0), NICS(0.5) and NICS(1.0) and charge on the metal ion (q_M , NPA charge) of *m*- Phenanthrene-Li⁺(*m*-C₁₄H₁₀Li⁺), *r*₁-C₁₄H₁₀Li⁺ and their H₂-bound analogues computed at MP2 level of theory using 6-31+G(d) basis set.

System	χ	η	ω	NICS(0)	NICS(0.5)	NICS(1.0)	$\mathbf{q}_{\mathbf{M}}$
$m-C_{14}H_{10}Li^+$	8.097	9.183	3.570	-5.88	-7.56	-8.14	0.908
$1H_2@C_{14}H_{10}Li^+$	7.402	10.519	2.605	-6.00	-7.59	-8.13	0.831
$2H_2@C_{14}H_{10}Li^+$	7.386	10.523	2.592	-6.03	-7.58	-8.08	0.736
$3H_2@C_{14}H_{10}Li^+$	7.350	10.491	2.574	-5.98	-7.57	-8.08	0.657
$4H_2@C_{14}H_{10}Li^+$	7.209	10.558	2.461	-5.53	-7.16	-7.74	0.690
$r1-C_{14}H_{10}Li^+$	8.322	9.608	3.604	-8.31	-10.07	-10.12	0.893
$1H_2@C_{14}H_{10}Li^+$	8.210	9.799	3.439	-8.44	-10.14	-10.16	0.823
$2H_2@C_{14}H_{10}Li^+$	8.173	9.815	3.402	-8.42	-10.14	-10.15	0.725
$3H_2@C_{14}H_{10}Li^+$	8.141	9.850	3.364	-8.27	-10.02	-10.06	0.644

m- Metals placed on the middle ring rl- metal placed on the first ring

Table S10: The electronegativity (χ), hardness (η) and electrophilicity (ω) NICS(0), NICS(0.5) and NICS(1.0), and charge on the metal ion (q_M , NPA charge) of *m*- Phenanthrene $-\text{Li}_2^{2+}$ (*m*- $C_{14}H_{10}\text{Li}_2^{2+}$), rl- $C_{14}H_{10}\text{Li}_2^{2+}$, t- $C_{14}H_{10}\text{Li}_2^{2+}$, cis- $C_{14}H_{10}\text{Li}_2^{2+}$ and their H₂-bound analogues computed at MP2 level of theory using 6-31+G(d) basis set.

System	χ	η	ω	NICS(0)	NICS(0.5)	NICS(1.0)	$\mathbf{q}_{\mathbf{M}}$
$m-C_{14}H_{10}Li_2^{2+}$	11.161	10.264	6.068	-4.837	-6.91	-8.73	0.949,0.949
$6H_2@C_{14}H_{10}Li_2^{2+}$	10.882	10.199	5.806	-5.17	-7.19	-8.93	0.722,0.722
$8H_2@C_{14}H_{10}Li_2^{2+}$	10.739	10.237	5.633	-5.04	-6.96	-8.68	0.684,0.684
$rl-C_{14}H_{10}Li_2^{2+}$	11.964	9.202	7.778	-7.15	-9.55	-11.31	0.950,0.950
$4H_2@C_{14}H_{10}Li_2^{2+}$	11.828	9.275	7.542	-7.44	-9.84	-11.53	0.810,0.810
$6H_2@C_{14}H_{10}Li_2^{2+}$	11.721	9.379	7.324	-7.25	-9.56	-11.23	0.719,0.719
$8H_2@C_{14}H_{10}Li_2^{2+}$	11.580	9.509	7.051	-7.17	-9.34	-10.85	0.684,0.684
$t-C_{14}H_{10}Li_2^{2+}$	11.336	10.352	6.207	-8.34, -8.33	-10.48, -10.49	-10.63, -10.63	0.924,0.923
$4H_2@C_{14}H_{10}Li_2^{2+}$	11.175	10.344	6.036	-8.48, -8.42	-10.49, -10.51	-10.64, -10.62	0.765,0.765
$6H_2@C_{14}H_{10}Li_2^{2+}$	11.052	10.362	5.893	-8.25, -8.28	-10.35, -10.38	-10.53, -10.54	0.680,0.680
$8H_2@C_{14}H_{10}Li_2^{2+}$	11.043	10.315	5.911	-8.55, -8.51	-10.28, -10.79	-11.22, -10.95	0.680,0.680
cis-C ₁₄ H ₁₀ Li ₂ ²⁺	11.629	9.844	6.869	-8.365, -8.368	-10.94, -10.94	-11.09, -11.09	0.915,0.915
$2H_2@C_{14}H_{10}Li_2^{2+}$	11.305	10.337	6.181	-8.561, -8.565	-11.11, -11.10	-11.19, -11.20	0.835,0.835
$4H_2@C_{14}H_{10}Li_2^{2+}$	11.206	10.343	6.071	-8.523, -8.526	-11.08, -11.07	-11.18, -11.19	0.751,0.751
$6H_2@C_{14}H_{10}Li_2^{2+}$	11.084	10.377	5.919	-8.345, -8.345	-10.97, -10.97	-11.13, -11.14	0.671,0.671
$8H_2@C_{14}H_{10}Li_2^{2+}$	10.377	10.842	4.966	-8.268, -8.394	-11.07, -10.82	-11.35, -10.96	0.660,0.660

m- Metals placed on the middle ring (above and below), *t*- metal placed in the *trans* positions, *r1*- metals placed on the first ring (above and below) *cis*- metal placed in the *cis* positions (1 and 3 rings)

Table S11: The electronegativity (χ), hardness (η) and electrophilicity (ω) NICS(0), NICS(0.5) and NICS(1.0), and charge on the fluorine atom (q_F , NPA charge) of C₇H₇F and their H₂-bound analogues computed at MP2 level of theory using 6-31+G(d) basis set.

System	χ	η	ω	NICS(0)	NICS(0.5)	NICS(1.0)	$\mathbf{q}_{\mathbf{F}}$
C_7H_7F	4.108	10.307	0.819	@	@	@	-0.404
$1H_2@C_7H_7F$	4.126	10.291	0.827	@	@	@	-0.405
$2H_2@C_7H_7F$	4.142	10.276	0.835	@	@	@	-0.406
$3H_2@C_7H_7F$	4.147	10.269	0.837	@	@	@	-0.408
$4H_2@C_7H_7F$	4.158	10.267	0.842	@	@	@	-0.410
NICS not performed due to non planarity of C.H. ring							

--@-- NICS not performed due to non planarity of C₇H₇ ring

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2011

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2011

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is $\ensuremath{\mathbb{O}}$ The Owner Societies 2011

 $4H_2@\,C_{14}H_{10}L{i_2}^{2+}$

 $C_{14}H_{10}Li_2^{2+}$

2H₂@C₁₄H₁₀Li₂²⁺

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2011

values of the H₂-trapped annular complexes of the associated reactions.

Figure S4. Variation of the interaction energy per H_2 molecule as a function of the NICS(1) values of the H_2 -trapped annular complexes of the associated reactions.

Cypent-Li-3H₂ HOMO Cypent-Li-3H₂ LUMO Cypent-Li-4H₂ HOMO Cypent-Li-4H₂ LUMO

Cypent-Li₂ HOMO

Cypent-Li₂ LUMO

Cypent-Li₂-8H₂ HOMO Cypent-Li₂-8H₂ LUMO

Benz-Li HOMO

Benz-Li LUMO

Benz-Li-4H₂ HOMO

Benz-Li-4H₂ LUMO

Benz-Li₂ HOMO

Benz-Li₂ LUMO

Benz-Li₂-8H₂ HOMO

Benz-Li₂-8H₂ LUMO

Naphth-Li HOMO

Naphth-Li LUMO

Naphth-Li-4H₂ HOMO

Naphth-Li-4H₂ LUMO

Figure S5. Some important frontier molecular orbitals of polynuclear hydrocarbons with and without H₂ trapping.