An Atomistic Study of a Poly(styrene sulfonate)/Poly(diallyldimethylammonium) Bilayer: The Role of Surface Properties and Charge Reversal

Baofu Qiao*, Marcello Sega and Christian Holm*

Institute for Computational Physics, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany

In Table S1, given are the average number of monomers adsorbed in the 1st and 2nd deposition cycles. The rinsed PSS monolayer was composing of the 1st deposition cycle. For the 2nd deposition cycle, only those monomers on strongly adsorbed PDADMA chains were taken into consideration. In the present work, a PDADMA chain is defined to be strongly adsorbed if at least one of its nitrogen atoms is located in the region of $z \leq 2.5$ nm from the adsorbing surface (see Fig. 6 in the main text).

surface			
$\rm P/H~^b$	Q_s c	$\langle NPSS \rangle$	$\langle N_{PDADMA} \rangle$
Р	0	64	86
Р	16	84	69
Р	36	76	75
Н	0	60	74
Н	16	76	75
Н	36	88	82

TABLE S1. Average number of adsorbed monomers in the $1^{st}/2^{nd}$ deposition cycle ^a

^a The standard deviations are less than 20% of the corresponding average values.

^b P/H represents system with hydroxylated/non-hydroxylated adsorbing surface, respectively.

^c Number of surface charges (in unit of e).