
Electronic Supplementary Information: Molecular
dynamics study on helium nanobubbles in water

Takenori Yamamoto and Shuhei Ohnishi

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011



1 The constant energy simulations

We performed the constant energy simulation after the constant temperature simulation for
each of the nanobubble systems with bubble radii of about 2, 3, and 5 nm. Figure 1 shows the
energy, temperature, and pressure during the constant energy simulation.
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Figure 1: (a) The energy, (b) temperature, and (c) pressure of the nanobubble system during
the constant energy simulation.

2 Computational details

We calculated the normal pressure profile of the nanobubbles using the Irving-Kirkwood method
and the Thompson’s algorithm. [1, 2] This algorithm can be used for the pair potential only.
We decomposed the forces coming from the each angle term to two pair-forces, and used shifted
Coulomb potential with the same cutoff as that of the Lennard-Jones potential. Figure 2 shows
that the kinetic, bonded, and non-bonded contributions to the normal pressure profiles.
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Figure 2: Components of pressure profile for the bubbles with the initial radii of (a) 2 nm, (b)
3 nm, and (c) 5 nm, respectively.

Surface tensions of bubble γ were calculated using the formula,

γ3 =
3

8
(pin − pout)

2
∫ R∞

0
r2 (PN(r)− pout) dr. (1)

The pin and pout are the inner and outer pressures, respectively, which were determined by
fitting the normal pressure profile PN(r) to the hyperbolic tangent function,

P (r) =
pin + pout

2
− pin − pout

2
tanh (2(r −Rp)/ξp) . (2)

R∞ must be chosen as PN(r) = pout for r > R∞. In practice, we used a R∞ of 10 nm for all
cases. The fitted parameters for the nanobubbles are shown in Table 1.

Table 1: Rini is the initial radius of bubble. pin and pout are the inner and outer pressures,
respectively. ξp is the interfacial width of pressure.

Rini (nm) 2 3 5
pin (MPa) 61.248 38.650 24.130
pout (MPa) -1.637 -0.762 -1.804
ξp (nm) 0.634 0.293 0.274

The surface of tension was calculated by the Laplace equation,

Rs =
2γ

pin − pout
, (3)

with the determined surface tension γ.
We also calculated the surface tension for a flat water surface using

γ∞ =
Lz

2

[
⟨Pzz⟩ −

1

2
(⟨Pxx⟩+ ⟨Pyy⟩)

]
, (4)

where Lz is the cell length in z-direction, and Pαβ is a component of the stress tensor. [3] The
⟨. . .⟩ refer to time average.
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3 Additional figures

Figure 3 shows the dipole and quadropole densities around the nanobubble interface. Figure 4
shows the electrostatic potential around the nanobubble interface and its dipole and quadropole
contributions.
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Figure 3: (a) Dipole and (b) quadropole moment densities for each of bubbles with the initial
radii of 2 nm (red), 3 nm (green), and 5 nm (bule). Those for the flat water surface are also
shown by violet lines.
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Figure 4: (a) Electrostatic potential and (b) its quadropole and (c) dipole contributions for
each of bubbles with the initial radii of 2 nm (red), 3 nm (green), and 5 nm (bule). Those for
the flat water surface are also shown by violet lines.
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