Electronic Supplementary Information

Direct measurements of the high temperature rate constants of the reactions NCN + O, NCN + NCN, and NCN + M

J. Dammeier, N. Faßheber, G. Friedrichs

Institut für Physikalische Chemie, Olshausenstr. 40, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany

T/K	$p/{\rm mbar}$	$\rho/({\rm mol/cm^3})$	x(NCN)/ppm	$\frac{k_{\rm NCN+M}}{{\rm cm}^3/{\rm mol~s}}$	$\frac{k_{\rm NCN+NCN}}{{\rm cm}^3/{\rm mol~s}}$			
	$\rho \approx$	$1.9 \times 10^{-6} \text{ mo}$	l/cm^3 , incident s	hock wave				
966	143	1.78×10^{-6}	59	_	1.0×10^{12}			
1065	163	1.84×10^{-6}	56	-	$3.0{ imes}10^{12}$			
1196	190	$1.91{\times}10^{-6}$	67	-	$1.0{ imes}10^{12}$			
1230	197	$1.92{ imes}10^{-6}$	130	-	$1.2{ imes}10^{12}$			
1266	204	1.94×10^{-6}	60	-	$2.0{ imes}10^{12}$			
1380	227	1.98×10^{-6}	59	-	$1.0{ imes}10^{12}$			
1396	231	$1.99{\times}10^{-6}$	61	-	$1.5{ imes}10^{12}$			
1400	231	$1.99{ imes}10^{-6}$	59	-	$1.5{ imes}10^{12}$			
1548	261	2.03×10^{-6}	67	-	$2.0{\times}10^{12}$			
$\rho \approx 3.8 \times 10^{-6} \text{ mol/cm}^3$, incident shock wave								
984	293	$3.58{ imes}10^{-6}$	21	-	1.5×10^{12}			
1036	305	$3.54{ imes}10^{-6}$	21	-	$2.0{\times}10^{12}$			
1261	406	$3.87{ imes}10^{-6}$	28	-	$2.0{\times}10^{12}$			
1412	467	3.98×10^{-6}	50	-	$2.0{\times}10^{12}$			
	$\rho \approx$	$4.1 \times 10^{-6} \text{ mol}$	$1/\mathrm{cm}^3$, reflected s	shock wave				
1620	489	3.61×10^{-6}	14	-	$3.0{ imes}10^{12}$			
1705	523	3.71×10^{-6}	15	-	5.0×10^{12}			
1734	537	3.72×10^{-6}	50	-	5.0×10^{12}			
1857	594	3.85×10^{-6}	64	-	$3.0{ imes}10^{12}$			
2093	703	4.04×10^{-6}	60	$2.5{ imes}10^8$	-			
2209	758	4.13×10^{-6}	65	$6.0{ imes}10^8$	-			
2345	823	4.22×10^{-6}	30	1.4×10^{9}	-			
2375	838	4.24×10^{-6}	65	2.2×10^9	-			
2406	852	4.26×10^{-6}	65	$1.9{ imes}10^9$	-			
2488	892	4.31×10^{-6}	130	$3.9{ imes}10^9$	-			
2574	933	4.36×10^{-6}	60	4.0×10^{9}	-			
2847	1066	4.50×10^{-6}	60	$1.8{ imes}10^{10}$	-			
2886	1084	4.52×10^{-6}	64	$2.0{ imes}10^{10}$	-			
3248	1262	4.61×10^{-6}	65	$5.0{ imes}10^{10}$	-			
$\rho \approx 8.6 \times 10^{-6} \text{ mol/cm}^3$, reflected shock wave								
1042	475	5.48×10^{-6}	9	-	2.5×10^{12}			
1159	364	8.41×10^{-6}	19	-	$3.0{ imes}10^{12}$			
1325	710	6.45×10^{-6}	9	-	$3.5{ imes}10^{12}$			
1361	741	6.55×10^{-6}	14	-	$3.0{ imes}10^{12}$			
1494	857	6.90×10^{-6}	13	-	$2.5{\times}10^{12}$			
1495	859	6.91×10^{-6}	4	-	$3.5{\times}10^{12}$			

Table 1:	Experimental	conditions	and 1	results	of shock	tube e	experiments	without	additional	reac-
	tion partner.									

T/K	$p/{\rm mbar}$	$\rho/({\rm mol/cm^3})$	x(NCN)/ppm	$\frac{k_{\rm NCN+M}}{{ m cm}^3/{ m mol \ s}}$	$\frac{k_{\rm NCN+NCN}}{{\rm cm}^3/{ m mol~s}}$
1517	961	7.62×10^{-6}	12	-	3.0×10^{12}
1642	990	$7.25{ imes}10^{-6}$	16	-	$2.5{\times}10^{12}$
1665	1008	7.28×10^{-6}	12	-	4.0×10^{12}
1685	1020	7.28×10^{-6}	13	-	$3.5{ imes}10^{12}$
1763	1099	7.50×10^{-6}	17	-	$3.0{ imes}10^{12}$
1900	1227	7.77×10^{-6}	20	-	$5.0{ imes}10^{12}$
2012	1331	7.96×10^{-6}	19	1.4×10^{8}	-
2014	1334	$7.97{ imes}10^{-6}$	31	1.8×10^{8}	-
2024	1304	7.75×10^{-6}	20	$2.0{ imes}10^8$	-
2317	1619	8.41×10^{-6}	18	$1.5{ imes}10^9$	-
2357	1663	8.49×10^{-6}	22	$1.2{ imes}10^9$	-
2561	1854	8.71×10^{-6}	26	2.5×10^9	-
2924	2204	9.07×10^{-6}	50	$2.5{\times}10^{10}$	-
1156	1134	1.18×10^{-5}	5	-	5.0×10^{12}
1322	1415	$1.29{\times}10^{-5}$	5	-	$5.0{\times}10^{12}$
1432	1599	1.34×10^{-5}	7	-	$2.5{\times}10^{12}$
1588	1884	1.43×10^{-5}	7	-	$3.0{\times}10^{12}$

Table 2: Experimental conditions and results of shock tube experiments with N_2O as an O atom precursor.

T/K	$p/{\rm mbar}$	$\rho/({\rm mol/cm^3})$	x(NCN)/ppm	$x(N_2O)/ppm$	$rac{k_{ m NCN+O}}{ m cm^3/mol~s}$			
$\rho\approx 4.3\times 10^{-6}~{\rm mol/cm^3}$								
2099	709	4.06×10^{-6}	63	1052	$8.0 imes 10^{13}$			
2285	797	4.20×10^{-6}	63	1052	$1.0 imes 10^{14}$			
2438	870	4.29×10^{-6}	63	1052	$6.0 imes 10^{13}$			
2459	882	4.31×10^{-6}	58	700	8.0×10^{13}			
2541	921	4.36×10^{-6}	63	1052	$6.0 imes10^{13}$			
2580	939	4.38×10^{-6}	57	1275	$7.0 imes 10^{13}$			
2783	1040	4.50×10^{-6}	55	1948	8.0×10^{13}			
$ ho pprox 8.2 imes 10^{-6} \ { m mol/cm^3}$								
1826	1176	7.75×10^{-6}	17	4280	$6.0 imes 10^{13}$			
1866	1198	7.72×10^{-6}	20	1080	$6.0 imes 10^{13}$			
1900	1232	7.79×10^{-6}	19	1080	8.0×10^{13}			
1964	1289	7.89×10^{-6}	22	1080	$7.0 imes 10^{13}$			
1977	1305	7.94×10^{-6}	29	1068	$6.5 imes 10^{13}$			
2138	1454	8.18×10^{-6}	21	1080	$6.5 imes10^{13}$			
2409	1713	8.55×10^{-6}	55	1046	6.0×10^{13}			
2563	1861	8.76×10^{-6}	38	1977	9.0×10^{13}			