Electronic Supplementary Information. Structures and Vibrational Spectroscopy of Partially Reduced Gas-Phase Cerium Oxide Clusters

Asbjörn M. Burow,[†] Marek Sierka,^{*,†} Radosław Włodarczyk,[†] Joachim Sauer,[†]

Torsten Wende,[‡] Pieterjan Claes,[¶] Ling Jiang,[‡] Gerard Meijer,[‡] Peter Lievens,[¶] and Knut R. Asmis^{*,‡}

Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany, and Laboratory of Solid State Physics and Magnetism, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium

E-mail: marek.sierka@chemie.hu-berlin.de; asmis@fhi-berlin.mpg.de

 $[\]ensuremath{^*\text{To}}$ whom correspondence should be addressed

[†]Humboldt-Universität zu Berlin

[‡]Max-Planck-Gesellschaft

[¶]Katholieke Universiteit Leuven

1 Experimental IRVPD spectra of CeO_2CeO^+ ·Ne and CeO_2CeO^+ ·He

The simulated IR absorption spectrum of the structure **2-3a** agrees well with the experimental IRVPD spectrum of CeO_2CeO^+ ·Ne (cf. Figure 4 of the publication). In this spectrum, the three intense transitions in the range from 527 to 674 cm⁻¹ and the peak at 840 cm⁻¹ are attributed to **2-3a**. In addition, the experimental IRVPD spectrum shows several bands of small intensity at 506, 655, 690, 703, and 790 cm⁻¹, which are enhanced exchanging the Ne with a He messenger atom. The experimental IRVPD spectra of both complexes, CeO_2CeO^+ ·Ne and CeO_2CeO^+ ·He, are given in Figure S.1.

Fig. S.1: Experimental IRVPD spectra of the complexes CeO_2CeO^+ ·Ne and CeO_2CeO^+ ·He.

2 Simulated IR absorption spectra of (CeO₂)₄CeO⁺ (BP-86 functional)

For the $(CeO_2)_4CeO^+$ cluster, the simulated IR absorption spectra of the structure **5-9d** obtained with the B3LYP and TPSSh exchange-correlation functionals are in good agreement with the experimental IRVPD spectrum of the complex $(CeO_2)_4CeO^+$ ·Ne. This is not the case for the simulated IR absorption spectrum obtained with the BP-86 functional (Figure S.2).

Fig. S.2: Simulated IR absorption spectra of the structures 5-9a, 5-9b, and 5-9d using the BP-86 functional and the experimental IRVPD spectrum of the cluster-rare gas atom complex $(CeO_2)_4CeO^+$ ·Ne.

3 IR spectra of the oxygen-terminated (111) ceria surface

Stubenrauch *et al.* measured the high resolution electron energy loss (HREEL) spectrum of the oxygen-terminated (111) surface ceria (see reference 74 in our publication). This spectrum is displayed in Figure S.3 and compared with the experimental IRVPD spectrum of $(CeO_2)_4CeO^+$ ·Ne. In these spectra, the regions between 400 and 600 cm⁻¹ show similar absorption bands for the two systems. The absorptions of the cluster-rare gas atom complex around 650 cm⁻¹ are not observed in the spectrum of the surface.

Fig. S.3: Experimental IRVPD spectrum of the cluster-rare gas atom complex $(CeO_2)_4CeO^+$ ·Ne and experimental HREEL spectrum of the oxygen-terminated (111) surface ceria.

4 Atomic distances and coordination numbers

The following Table S.1 shows Ce–O distances (Å) and coordination numbers for B3LYP optimized structures shown in the Figures 1, 2, and 3 of the publication. Distances are presented separately for different types of Ce and O atoms: The column O_{term} –Ce– O_{μ} shows distances Ce– O_{term} /Ce– O_{μ} of terminal O atoms (O_{term}) and bridging O atoms (O_{μ}) to their shared Ce atom which is always Ce(+IV). Distances of O_{μ} atoms to Ce(+IV) and Ce(+III) atoms without terminal oxygen are presented in the column Ce– O_{μ} . If there is more than one distance of the same type in a single cluster then the average is taken. Coordination numbers are determined by the interatomic distances.

	O _{term} –Ce–O _µ	$Ce-O_{\mu}$		Ce coordination	
isomer	Ce(+IV)	Ce(+IV)	Ce(+III)	Ce(+IV)	Ce(+III)
1-1	1.76/…				1
2-2			2.08 ^a		2×2^a
2-3a	1.77/2.19		2.02	3	2
3-4 a			2.17		3×3
3-4 b			2.13		$2+2 \times 3$
3-5a	1.78/2.35	2.01	2.18	3+4	3
3-5b		2.14	2.28	2×4	4
4-7 a	1.79/2.31	2.14	2.17	3×4	3
5-9a		2.15	2.18	$3 \times 4 + 5$	3^b
5-9b		2.12	2.27	$3+2 \times 4+5$	4
5-9c		2.12	2.28	$3+2 \times 4+5$	4
5-9d		2.23	2.36	4×5	5

Tab. S.1: Ce–O distances (Å) and coordination numbers for B3LYP optimized structures.

^{*a*} Both Ce atoms are in oxidation state +2.5. ^{*b*} In the B3LYP optimized structure the central O atom is not coordinated to Ce(+III) since the distance is 3.12 Å.