Aza-Boron-Dipyrromethene Dyes: TD-DFT Benchmarks, Spectral Analysis and Design of Original Near-IR Structures Electronic Supplementary Information

Boris LE GUENNIC, *,[†] Olivier MAURY,[‡] and Denis JACQUEMIN^{*, \P}

Laboratoire des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, 35042 Rennes cedex, France., Université de Lyon, CNRS, Institut de Chimie de Lyon, Ecole Normale Supérieure de Lyon, 15 Parvis René Descartes, 69342 Lyon Cedex 07, France, and Laboratoire CEISAM - UMR 6230, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

E-mail: boris.leguennic@univ-rennes1.fr; Denis.Jacquemin@univ-nantes.fr

^{*}To whom correspondence should be addressed

[†]Sciences Chimiques, Rennes

[‡]ENS de Lyon

[¶]CEISAM, Nantes

Scheme ESI-1: Representation of the aza-BODIPY dyes investigated herein.

Table ESI-1: Impact of the atomic basis set on the computed transition wavelengths (in nm) and oscillator strengths (between brackets). The structure, **1**, corresponds to $R_1=R_2=H$ in Scheme ESI-1 has been used. All calculations have been performed at the PCM(CHCl₃)-TD-PBE0/X//PCM(CHCl₃)-PBE0/6-311G(d,p) level of approximation. Only the major bands (f > 0.1) are reported.

Basis (X)	$\lambda_1(f_1)$	$\lambda_2(f_2)$	$\lambda_3 (f_3)$
6-31G	564 (0.90)	449 (0.41)	355 (0.19)
6-31G(d)	583 (0.87)	453 (0.37)	357 (0.19)
6-31G(d,p)	583 (0.87)	453 (0.37)	357 (0.19)
6-31+G(d)	593 (0.87)	455 (0.39)	358 (0.19)
6-31++G(d,p)	593 (0.87)	455 (0.39)	358 (0.19)
6-31+G(2d)	598 (0.86)	455 (0.38)	358 (0.19)
6-31+G(2d,p)	598 (0.86)	455 (0.38)	358 (0.19)
6-31++G(2d,2p)	598 (0.86)	455 (0.38)	358 (0.19)
6-311G(d)	591 (0.87)	454 (0.38)	358 (0.19)
6-311G(d,p)	591 (0.87)	454 (0.38)	357 (0.19)
6-311+G(d)	596 (0.87)	456 (0.39)	358 (0.19)
6-311++G(d,p)	597 (0.87)	455 (0.39)	358 (0.19)
6-311+G(2d,p)	599 (0.86)	455 (0.38)	358 (0.19)
6-311++G(2d,2p)	599 (0.86)	455 (0.38)	358 (0.19)
6-311++G(2df,2pd)	600 (0.86)	455 (0.38)	358 (0.19)

	1							
Basis (X)	a	b	с	d	e	f	g	h
6-31G	1.437	1.547	1.372	1.417	1.391	1.435	1.323	1.404
6-31G(d)	1.388	1.565	1.358	1.414	1.384	1.435	1.316	1.389
6-31G(d,p)	1.389	1.565	1.358	1.414	1.384	1.435	1.316	1.389
6-31G(2d,2p)	1.381	1.561	1.356	1.413	1.383	1.433	1.315	1.387
6-311G(d)	1.393	1.561	1.356	1.412	1.382	1.433	1.316	1.388
6-311G(d,p)	1.393	1.561	1.356	1.412	1.382	1.433	1.316	1.388
6-311G(2d,p)	1.385	1.560	1.354	1.410	1.380	1.431	1.312	1.387
6-311G(2d,2p)	1.386	1.560	1.354	1.410	1.380	1.431	1.312	1.387
6-311++G(d,p)	1.397	1.559	1.357	1.412	1.383	1.433	1.314	1.389
6-311++G(2d,2p)	1.388	1.559	1.355	1.410	1.380	1.431	1.312	1.388
cc-pVTZ	1.387	1.563	1.354	1.410	1.379	1.431	1.312	1.387

Table ESI-2: Impact of the selected basis set on the bond lengths (in Å) for the compound of Table ESI-1. All calculations at the $PCM(CHCl_3)-PBE0/X$.

Basis (X)	$lpha_{ m FBF}$	$\alpha_{\rm BNC}$	$\alpha_{\rm NCN}$
6-31G	109.1	122.0	123.4
6-31G(d)	111.5	122.3	124.2
6-31G(d,p)	111.5	122.3	124.2
6-31G(2d,2p)	111.3	122.3	124.3
6-311G(d)	111.0	122.1	124.3
6-311G(d,p)	111.0	122.1	124.3
6-311G(2d,p)	111.1	122.1	124.3
6-311G(2d,2p)	111.1	122.1	124.3
6-311++G(d,p)	110.6	122.1	124.3
6-311++G(2d,2p)	110.9	122.1	124.2
cc-pVTZ	111.0	122.1	124.1
	I		

Table ESI-3: Impact of the selected basis set on the valence angles (in degrees), see caption of Table ESI-2.

Basis (X)	$\lambda_1(f_1)$	$\lambda_2 (f_2)$	$\lambda_3 (f_3)$
6-31G	622 (0.85)	471 (0.39)	367 (0.20)
6-31G(d)	604 (0.86)	458 (0.38)	358 (0.20)
6-31G(d,p)	604 (0.86)	458 (0.38)	359 (0.19)
6-31G(2d,2p)	602 (0.86)	456 (0.37)	358 (0.20)
6-311G(d)	598 (0.87)	455 (0.38)	358 (0.19)
6-311G(d,p)	599 (0.86)	455 (0.38)	358 (0.19)
6-311G(2d,p)	596 (0.87)	453 (0.37)	356 (0.19)
6-311G(2d,2p)	597 (0.87)	453 (0.37)	356 (0.19)
6-311++G(d,p)	595 (0.86)	455 (0.38)	359 (0.19)
6-311++G(2d,2p)	594 (0.87)	453 (0.37)	357 (0.19)
cc-pVTZ	594 (0.87)	453 (0.37)	356 (0.19)

Table ESI-4: Variations of the PCM(CHCl₃)-TD-PBE0/6-311+G(2d,p) transition wavelengths as a function of the basis set used to optimize the geometry.

gles in degrees), obtained for the $R_1=H$, $R_2=Br$ derivative (se	from literature. ¹ All values are computed with the 6-311G(2d,p	
Table ESI-5: Structural parameters (bond lengths in Å, valence an	Scheme ESI-1 or 2 in Scheme 1). The experimental values are taken	basis set without solvent effect.

				Bond l	engths				Val	ence ang	les
Functional	а	q	ပ	q	e	f	00	h	$lpha_{ m FBF}$	QBNC	00NCN
Experiment (1)	1.392	1.557	1.368	1.418	1.362	1.438	1.327	1.398	110.1	121.6	124.5
Experiment (2)	1.377	1.564	1.365	1.398	1.390	1.433	1.322	1.401		121.3	124.0
Experiment (average)	1.384	1.561	1.366	1.408	1.376	1.435	1.325	1.399	110.1	121.4	124.2
PBE	1.398	1.573	1.371	1.421	1.390	1.444	1.325	1.397	111.6	122.1	124.4
SSAT	1.396	1.572	1.372	1.418	1.389	1.441	1.325	1.397	111.4	122.2	124.3
TPSSh	1.390	1.568	1.364	1.415	1.384	1.436	1.320	1.392	111.4	122.2	124.3
O3LYP	1.385	1.575	1.357	1.414	1.383	1.437	1.317	1.390	112.1	122.2	124.3
B3LYP	1.388	1.569	1.360	1.414	1.383	1.436	1.317	1.394	111.4	122.1	124.2
PBE0	1.382	1.563	1.353	1.411	1.379	1.431	1.323	1.385	111.6	122.2	124.3
BMK	1.378	1.559	1.348	1.420	1.383	1.437	1.312	1.388	111.5	122.3	124.1
M05-2X	1.383	1.567	1.346	1.413	1.378	1.428	1.310	1.390	111.6	122.5	124.4
LC-PBE	1.373	1.547	1.327	1.401	1.363	1.413	1.299	1.379	111.5	122.5	124.0
LC-@PBE	1.383	1.564	1.335	1.410	1.371	1.423	1.308	1.335	111.9	122.6	124.1
CAM-B3LYP	1.381	1.563	1.346	1.410	1.376	1.427	1.310	1.391	111.4	122.3	124.0
@B97	1.394	1.573	1.343	1.417	1.379	1.429	1.314	1.396	111.6	122.4	124.3
ωB97X	1.387	1.569	1.342	1.414	1.377	1.427	1.311	1.393	111.7	122.4	124.2
@B97XD	1.383	1.567	1.344	1.412	1.378	1.426	1.309	1.389	111.6	122.5	124.3

				Bond 1	engths				Vale	ence ang	es
Functional	а	q	ပ	q	e	f	50	h	$lpha_{ m FBF}$	QBNC	QNCN
Experiment (1)	1.365	1.563	1.360	1.399	1.376	1.436	1.317	1.409	110.1	121.5	124.9
Experiment (2)	1.376	1.562	1.360	1.408	1.374	1.426	1.326	1.396		122.6	124.2
Experiment (average)	1.371	1.562	1.360	1.404	1.375	1.431	1.321	1.402	110.1	122.0	124.6
PBE	1.400	1.572	1.374	1.422	1.390	1.443	1.325	1.397	111.3	121.9	124.4
SSAT	1.399	1.571	1.375	1.420	1.388	1.440	1.326	1.398	111.0	122.0	124.4
TPSSh	1.392	1.567	1.367	1.416	1.383	1.435	1.320	1.393	111.1	122.1	124.4
03LYP	1.387	1.574	1.360	1.416	1.382	1.436	1.328	1.390	111.8	121.9	124.4
B3LYP	1.390	1.568	1.362	1.416	1.382	1.435	1.317	1.394	111.1	121.9	124.2
PBE0	1.384	1.562	1.355	1.413	1.378	1.430	1.313	1.386	111.3	122.0	124.4
BMK	1.380	1.557	1.350	1.421	1.382	1.436	1.313	1.389	111.2	122.2	124.1
M05-2X	1.385	1.566	1.348	1.416	1.376	1.428	1.311	1.390	111.4	122.3	124.6
LC-PBE	1.375	1.547	1.329	1.404	1.362	1.413	1.299	1.379	111.2	122.3	124.1
LC-@PBE	1.385	1.564	1.338	1.412	1.370	1.423	1.307	1.390	111.7	122.3	124.2
CAM-B3LYP	1.384	1.562	1.348	1.413	1.375	1.427	1.310	1.391	111.2	122.1	124.1
@B97	1.396	1.572	1.346	1.420	1.377	1.429	1.314	1.396	111.4	122.1	124.4
ωB97X	1.389	1.568	1.345	1.417	1.375	1.426	1.311	1.393	111.4	122.0	124.3
@B97XD	1.386	1.566	1.348	1.415	1.376	1.425	1.309	1.390	111.5	122.0	124.4

Table ESI-7: List of major computed bands for **4** with a PCM(CH₂Cl₂)-TD-X/6-311+G(2d,p)//PCM(CH₂Cl₂)-PBE0/6-311G(2d,p) scheme. All values in nm. Experimental values are from.³

Functional	$\lambda_1(f_1)$	$\lambda_2 (f_2)$	$\lambda_3 (f_3)$	$\lambda_4 (f_4)$
PBE	1267 (0.54)	1083 (0.56)	659 (0.60)	
TPSS	1212 (0.55)	1042 (0.57)	645 (0.61)	
TPSSh	1021 (0.62)	888 (0.60)	610 (0.55) & 497 (0.44)	423 (1.30)
O3LYP	1011 (0.62)	880 (0.58)	612 (0.54) & 499 (0.43)	424 (1.36)
B3LYP	885 (0.76)	764 (0.64)	584 (0.42) & 471 (0.46)	395 (1.84)
PBE0	834 (0.85)	712 (0.68)	565 (0.35) & 454 (0.47)	379 (2.04)
M06	810 (0.91)	622 (0.68)	457 (0.47)	381 (1.93)
BMK	711 (1.14)	562 (0.89)	411 (0.43)	343 (2.32)
M05-2X	688 (1.22)	493 (1.17)	394 (0.34)	329 (2.24)
LC-PBE	672 (1.19)			361 (2.62)
LC- <i>w</i> PBE	669 (1.18)			369 (2.41)
CAM-B3LYP	679 (1.21)	467 (1.31)	394 (0.23)	328 (2.09)
ω B97	673 (1.18)			369 (2.46)
ω B97X	665 (1.19)			382 (2.31)
ωB97XD	662 (1.21)			417 (1.97)
Exp	745 (m)	623 (w)	482 (vw)	359 (s)

Table ESI-8: List of major computed bands for **5** with a $PCM(CH_2Cl_2)$ -TD-X/6-311+G(2d,p)//PCM(CH_2Cl_2)-PBE0/6-311G(2d,p) scheme. All values in nm. Experimental values are from.¹

Functional	$\lambda_1(f_1)$	$\lambda_2 (f_2)$	$\lambda_3 (f_3)$
PBE	852.4 (0.92)	706 (1.03)	
TPSS	829 (0.95)	687 (1.07)	
TPSSh	750 (1.09)	619 (0.63)	571 (0.74)
O3LYP	751 (1.09)	617 (0.64)	572 (0.73)
B3LYP	713 (1.18)	559 (0.97)	505(0.82)
PBE0	690 (1.22)	526 (1.14)	460 (0.83)
M06	701 (1.20)	521 (1.28)	463 (0.89)
BMK	647 (1.27)	448 (1.61)	379 (1.54)
M05-2X	649 (1.24)	417 (2.09)	349 (1.57)
LC-PBE	655 (1.17)	353 (1.90)	326 (2.25)
LC- <i>w</i> PBE	652 (1.16)	362 (1.60)	333 (2.45)
CAM-B3LYP	648(1.22)	414 (1.99) & 382 (0.72)	349 (1.15)
ω B97	657 (1.16)	362 (1.75)	333 (2.32)
ω B97X	647 (1.18)	374 (1.64)	343 (2.33)
ωB97XD	641 (1.20)	400 (1.51)	364 (2.03)
Exp	694 (s)	492 (m)	373 (s)

References

- Bellier, Q.; Pegaz, S.; Aronica, C.; Le Guennic, B.; Andraud, C.; Maury, O. Org. Lett. 2011, 13, 22–25.
- (2) Killoran, J.; Allen, L.; Gallagher, J.; Gallagher, W.; O'Shea, D. Chem. Comm. 2002, 1862–1863.
- (3) Bouit, P. A.; Kamada, K.; Feneyrou, P.; Berginc, G.; Toupet, L.; Maury, O.; Andraud, C. Adv. Mater. 2009, 21, 1151–1154.