Supplementary Information for

DSD-PBEP86: In search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections

Theoretical method	
LDA alternatives	
Double hybrids Input examples	S3
List of abbreviations	
Errors over the training sets	
Parameters of the DSD-DFTs	
Parameters and errors for DOD-DFT	
Errors for the S130 set	
Errors for the validation sets	S10
Errors for the W4-11 set	S11
Errors for the HFREQ27 set	S11

Theoretical Method

For the W4-08 and DBH24 sets we used the aug'-pc3 basis set of Jensen,¹⁻⁵ with diffuse functions on non-hydrogen atoms and adding a high exponent d function for the W4-08 in order to properly account for high oxidation states. For the rest we used the Weigend and Ahlrichs Def2 bases:^{6,7} Def2-TZVP for S22 and Grubbs, as the size of the molecules made it arduous to climb to a quadruple- ζ type of functions. Following past practice, we added half the counterpoise correction in the S22 set to correct for the basis set superposition error, exploiting the well-known finding that uncorrected weak interaction energies converge from above, and corrected ones from below, in function of the basis se ^{8,9}); Def2-QZVP was applied to MB, and Def2-QZVPP to the Pd set.

The Def2-QZVP basis set was used throughout the S130 set for the D3BJ parametrization. In addition, we applied one-half the counterpoise correction for the S22 and RG6 sets. The W4-11 set was calculated with aug-pc3+d; HFREQ27 with aug-pc2+2d and aug-pc3+d.

For the validation sets, we used the aug'-pc3+d basis set for NHTBH38, HTBH38, H-Bonds and vdW. For Pericyclic the aug'-pc2+2d basis set was used, and for Alkanes pc3.

The MP2 energies were calculated with the default "frozen core" correlation calculation, with only the valence electrons in the active space. For the transition metals, also the n-1 s and p atomic orbitals were included in the active space.

All the DH calculations including D2 dispersion corrections were carried out using an in-house modified Gaussian09 version,¹⁰ which includes the dispersion correction. D3BJ dispersion corrections were calculated with the DFTD3 software.¹¹

LDA Alternatives

We briefly considered LDA correlation parametrizations other than VWN5. Perdew-Zunger,¹² while yielding slightly different total energies, yields essentially indistinguishable reaction energies, and it can reasonably be assumed that the same will hold true for the Perdew-Wang parametrization¹³ (not implemented in Gaussian). For the VWN3 parametrization we do find a degradation in performance: unlike the others which are fitted to quantum Monte Carlo simulations of the uniform electron gas,¹⁴ VWN3 is fitted to RPA (random phase approximation¹⁵) data for the same: RPA can be regarded as a crude approximation to CCSD.¹⁶

Examples of DSD-PBEP86 input for Gaussian09, Gaussian 03, Molpro, ORCA, and Q-CHEM.

• Gaussian09 [10]

```
#p b2plyp/cc-pVTZ
iop(3/125=0250005300,3/78=0430004300,3/76=0300007000,3/74=1004)
Example G09 input
0 1
0 
h 1 r
h 1 r 2 th
r=0.957
th=104.5
```

IOP(3/74) selects the functional (1004 corresponds to PBE-P86), overriding the default b-lyp; IOP(3/125) chooses c_s and c_o (0250005300 means 25% same spin and 53 % opposite spin MP2); IOP(3/78) gives the DFT correlation (in this case 43% P86); and IOP(3/76) the amount of DFT and exact exchange (30% PBE and 70% HF for this example).

• Gaussian03 [17]

#P pbep86/cc-pVTZ int(grid=fine)
IOp(3/74=1004,3/78=0430004300,3/76=0300007000) extraoverlay

8/10=4/1;9/16=-3/6;

Example G03 input

0 1 o h 1 r h 1 r 2 th r=0.957

th=104.5

Total energy has to be extracted as SCF energy + 0.25*(E2alpha-alpha + E2beta-beta) + 0.53*E2alpha-beta.

• Molpro [18]

```
gthresh, energy=1d-9, grid=1d-6
geom={
0;
h,1,r;
h,1,r,2,th
r=0.957 ang
th=104.5 deg
basis=vtz
percenthf=70.0
percentDFTc=43.0
percentPTab=53.0
percentPTss=25.0
{rks,pbex,p86
exchange,percenthf*0.01
dftfactor,1.00-percenthf*0.01,percentDFTc*0.01}
ekohnsham=energy
mp2
eab=EMP2 SING+EMP2 TRIP/3d0
ess=2d0*EMP2_TRIP/3d0
ecorrmp2val=(eab*percentPTab+ess*percentPTss)*0.01
edsdpbep86val=ekohnsham+ecorrmp2val
```

• Orca [19]

* xyz 0 1 C 0.0 0.0 0.0 0 0.0 0.0 1.1314 ! DFT aug-cc-pVTZ %method Exchange x_PBE Correlation c P86 LDAOpt C VWN5 ScalHFX 0.70 ScalDFX 0.30 ScalGGAC 0.43 ScalLDAC 0.43 ScalMP2C 1.00 FrozenCore FC ELECTRONS end %mp2 DoSCS True Ps 0.53 Pt 0.25 end

• Q-CHEM [20]

\$comment DSD-PBEP86 \$end \$molecule 0 1 0 H 1 R H 1 R 2 TH R = 0.957TH=104.5 \$end \$rem BASIS = aug-cc-pVTZCORRELATION = MP2 DH = 1 $DH \ OS = 510000$ $DH \ SS = 230000$ EXCHANGE = general GUI = 0 $JOB_TYPE = SP$ $SCF_FINAL_PRINT = 1$ \$end \$xc_functional X HF 0.68 X PBE 0.32 C P86 0.45 \$end

Optionally one might add

\$empirical_dispersion
\$6 0.29
\$end

in this case the following line should be added to the \$rem block

 $DFT_D = EMPIRICAL_GRIMME$

- 1. F. Jensen, J. Chem. Phys., 2001, 115, 9113.
- 2. F. Jensen, J. Chem. Phys., 2002, 116, 7372.
- 3. F. Jensen, J. Chem. Phys., 2002, 117, 9234.
- 4. F. Jensen and T. Helgaker, J. Chem. Phys., 2004, 121, 3463.
- 5. F. Jensen, J. Phys. Chem. A, 2007, 111, 11198-11204.
- 6. A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829.
- 7. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297.
- 8. A. Karton, A. Tarnopolsky, J.-F. Lamère, G. C. Schatz, and J. M. L. Martin, *J. Phys. Chem. A*, 2008, **112**, 12868-12886.
- 9. T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys., 2007, 9, 3397.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,

J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09, Revision B.01*, Gaussian, Inc., Wallingford CT, 2009. See also: http://www.gaussian.com

- 11. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, "DFT-D3 A dispersion correction for DFTfunctionals"; http://toc.uni-muenster.de/DFTD3, .
- 12. J. P. Perdew and A. Zunger, *Phys. Rev. B*, 1981, **23**, 5048.
- 13. J. P. Perdew and Y. Wang, *Phys. Rev. B*, 1992, **45**, 13244.
- 14. D. Ceperley, Phys. Rev. B, 1978, 18, 3126.
- 15. J. Oddershede, Advances in Quantum Chemistry 1978, 11, 275-352.
- 16. G. E. Scuseria, T. M. Henderson, and D. C. Sorensen, J. Chem. Phys., 2008, 129, 231101
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Rob, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian 03* (Gaussian, Inc., Wallingford, CT, 2003). See also: http://www.gaussian.com
- H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf, MOLPRO 2010.1. See also: http://www.molpro.net
- 19. Frank Neese, F. ORCA an ab initio, Density Functional and Semiempirical program package, Version 2.6. University of Bonn, 2008. See also: http://www.thch.uni-bonn.de/tc/orca/
- Y.Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A.T.B. Gilbert, L.V. Slipchenko, S.V. Levchenko, D.P. O'Neill, R.A. DiStasio Jr., R.C. Lochan, T.Wang, G.J.O. Beran, N.A. Besley, J.M. Herbert, C.Y.Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V.A. Rassolov, P.E. Maslen, P.P. Korambath, R.D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Daschel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A.D. Dutoi, T.R.. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. E. Kedziora, R.Z. Khaliullin, P. Klunzinger, A. M. Lee, M. S. Lee, W.Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P.M.W. Gill and M.Head-Gordon. Phys. Chem. Chem. Phys., 8, 3172 (2006). See also: http://www.q-chem.com

Table 1: List of abbreviations.

Abbreviation	Significance
Methods:	
DH	Double Hybrid
DSD	Dispersion corrected, SCS, DH
DOD	Dispersion corrected, SOS, DH
SCS	Spin Component Scaled
SOS	Scaled Opposite Spin
D2	2 nd generation dispersion correction
D3BJ	3 rd generation dispersion correction with Becke-Johnson damping
2020	function.
Coefficients	
CO	Opposite spin MP2 coefficient.
Cs	Same spin MP2 coefficient.
Cx	DFT exchange coefficient.
C _C	DFT correlation coefficient.
S ₆	Linear scaling of the r ⁻⁶ component in D2 or D3BJ.
S ₈	Linear scaling of the r^{-8} component in D3BJ.
a1. a2	D3BJ damping function parameters.
- 1) - 2	
Training sets	
W4-08	Total atomization energies
DBH24	Main group reaction barriers
S22	van der Waals and H-bonded systems
Pd	Oxidative addition reactions on a Pd atom
Grubbs	Metathesis reactions on Ru complexes
MB	Mindless Benchmark (main group random thermochemistry).
I raining sets for D	3BJ optimization (S130)
RG6	Rare gases dimers.
ACONF	N-aikane conformers.
ADIM6	Alkane dimers from ethane to n-neptane.
S22	van der Waals and H-bonded systems.
CYCONF	Cysteine conformers.
SCONF	Sugar conformers.
PCONF	Small peptide conformers.
S22+	Extended S22 set (at two stretched geometries).
Validation ente	
	Non Hydrogen Transfer Barrier Heights
	Hydrogon Transfer Darrier Heights
HIDHJO	H bandad dimara
	van der Waals dimers
VUVV	vali uti vvadis Ullileis Deriovalia reactiona
Alkonoo	Ferreyolic reductions.
Aikanes	Aikanes mermochemistry and isomerization.
	narmonic inequencies of small molecules.
VV 4 -11	A(0) Za(0) e e y e (extension of vv4-06).

	Exchan	ge		S					B88					PBE		
	Correla	tion	VWN5	P86	LYP	PBE	VWN5	LYP	PBE	P86	PW91	VWN5	i LYP	PBE	P86	PW91
	Grubbs		0.96	1.45	1.06	1.63	1.60	1.10	1.37	1.10	1.29	1.64	1.13	1.18	0.99	1.12
	W4-08 ^b		2.58	3.16	3.03	3.61	3.55	2.69	2.61	2.39	2.54	3.31	2.67	2.64	2.33	2.57
	non M	R	2.30	3.02	2.82	3.58	3.20	2.25	2.43	2.03	2.34	3.04	2.36	2.56	2.07	2.44
	MR		3.93	3.90	4.06	3.74	5.21	4.57	3.55	3.94	3.56	4.65	4.07	3.09	3.52	3.26
	DBH24		1.38	2.31	1.85	2.76	1.96	1.09	1.34	1.09	1.31	1.57	1.17	1.33	1.11	1.29
	s22 ^c		0.33	0.42	0.33	0.51	0.93	0.44	0.61	0.45	0.58	1.01	0.64	0.48	0.40	0.45
	Pd		1.27	1.71	1.36	1.74	1.53	0.95	1.55	1.54	1.48	1.34	0.88	1.37	1.37	1.22
	MB		4.47	5.12	5.63	4.83	6.05	4.51	3.51	3.50	3.50	5.63	4.41	3.49	3.51	3.59
	Mean		1.83	2.36	2.21	2.51	2.60	1.80	1.83	1.68	1.78	2.42	1.82	1.75	1.62	1.71
Exch	nange		mP	W			HS	E		0	х	TPSS	B98	BMK	тНСТ	н нстн407
Exch Corr	nange relation	LYP	mP PW91	W P86	PBE	PBE	HS PW91	E P86	LYP	0 LYP	X LYP	TPSS	B98	BMK	τHCT	H HCTH407
Exch Corr Grut	nange relation obs	LYP 1.12	mP PW91 1.15	W P86 1.02	PBE 1.21	PBE 1.09	HS PW91 1.05	E <u>P86</u> 0.91	LYP 1.08	0 LYP 1.63	X LYP 1.11	TPSS 1.45	B98 0.77	BMK 3.36	τΗCT 1.69	H HCTH407 1.99
Exch <u>Corr</u> Grut W4-	nange relation obs 08 ^b	LYP 1.12 2.64	mP <u>PW91</u> 1.15 2.48	W P86 1.02 2.28	PBE 1.21 2.55	PBE 1.09 2.63	HS <u>PW91</u> 1.05 2.56	E <u>P86</u> 0.91 2.34	LYP 1.08 2.70	0 LYP 1.63 2.50	X LYP 1.11 2.66	TPSS 1.45 2.50	B98 0.77 2.92	ВМК 3.36 3.50	τΗCT 1.69 2.98	H HCTH407 1.99 2.83
Exch <u>Corr</u> Grut W4-	nange relation obs 08 ^b n MR	LYP 1.12 2.64 2.27	mP PW91 1.15 2.48 2.32	W <u>P86</u> 1.02 2.28 1.97	PBE 1.21 2.55 2.40	PBE 1.09 2.63 2.53	HS <u>PW91</u> 1.05 2.56 2.44	E <u>P86</u> 0.91 2.34 2.05	LYP 1.08 2.70 2.36	O LYP 1.63 2.50 2.07	X LYP 1.11 2.66 2.25	TPSS 1.45 2.50 2.24	B98 0.77 2.92 2.52	BMK 3.36 3.50 2.96	τHCT 1.69 2.98 3.01	H HCTH407 1.99 2.83 2.82
Exch Corr Grut W4-I nor MR	nange relation obs 08 ^b n MR	LYP 1.12 2.64 2.27 4.30	mP <u>PW91</u> 1.15 2.48 2.32 3.31	W P86 1.02 2.28 1.97 3.65	PBE 1.21 2.55 2.40 3.31	PBE 1.09 2.63 2.53 3.21	HS <u>PW91</u> 1.05 2.56 2.44 3.21	E <u>P86</u> 0.91 2.34 2.05 3.68	LYP 1.08 2.70 2.36 4.21	0 LYP 1.63 2.50 2.07 4.29	X LYP 1.11 2.66 2.25 4.43	TPSS 1.45 2.50 2.24 3.76	B98 0.77 2.92 2.52 4.72	BMK 3.36 3.50 2.96 5.83	τHCT 1.69 2.98 3.01 2.84	H HCTH407 1.99 2.83 2.82 2.88
Exch Corr Grub W4- nor MR DBH	nange elation obs 08 ^b n MR 8	LYP 1.12 2.64 2.27 4.30 1.11	mP PW91 1.15 2.48 2.32 3.31 1.26	W P86 1.02 2.28 1.97 3.65 1.12	PBE 1.21 2.55 2.40 3.31 1.29	PBE 1.09 2.63 2.53 3.21 1.32	HS <u>PW91</u> 1.05 2.56 2.44 3.21 1.29	E P86 0.91 2.34 2.05 3.68 1.10	LYP 1.08 2.70 2.36 4.21 1.17	O LYP 1.63 2.50 2.07 4.29 1.30	X LYP 1.11 2.66 2.25 4.43 1.10	TPSS 1.45 2.50 2.24 3.76 1.43	B98 0.77 2.92 2.52 4.72 1.55	BMK 3.36 3.50 2.96 5.83 4.01	τHCT 1.69 2.98 3.01 2.84 2.50	H HCTH407 1.99 2.83 2.82 2.88 2.20
Exch Corr Grut W4- nor MR DBH s22°	nange relation obs 08 ^b n MR 8 8 424	LYP 1.12 2.64 2.27 4.30 1.11 0.52	mP PW91 1.15 2.48 2.32 3.31 1.26 0.48	W P86 1.02 2.28 1.97 3.65 1.12 0.40	PBE 1.21 2.55 2.40 3.31 1.29 0.51	PBE 1.09 2.63 2.53 3.21 1.32 0.44	HS <u>PW91</u> 1.05 2.56 2.44 3.21 1.29 0.43	E <u>P86</u> 0.91 2.34 2.05 3.68 1.10 0.36	LYP 1.08 2.70 2.36 4.21 1.17 0.63	O LYP 1.63 2.50 2.07 4.29 1.30 0.68	X LYP 1.11 2.66 2.25 4.43 1.10 0.47	TPSS 1.45 2.50 2.24 3.76 1.43 0.65	B98 0.77 2.92 2.52 4.72 1.55 0.54	BMK 3.36 3.50 2.96 5.83 4.01 1.15	τHCT 1.69 2.98 3.01 2.84 2.50 1.57	H HCTH407 1.99 2.83 2.82 2.88 2.20 2.35
Exch Corr Grut W4-I nor MR DBH s22° Pd	nange elation obs 08 ^b n MR R 124	LYP 1.12 2.64 2.27 4.30 1.11 0.52 0.92	mP PW91 1.15 2.48 2.32 3.31 1.26 0.48 1.42	W P86 1.02 2.28 1.97 3.65 1.12 0.40 1.51	PBE 1.21 2.55 2.40 3.31 1.29 0.51 1.48	PBE 1.09 2.63 2.53 3.21 1.32 0.44 1.24	HS <u>PW91</u> 1.05 2.56 2.44 3.21 1.29 0.43 1.19	E <u>P86</u> 0.91 2.34 2.05 3.68 1.10 0.36 1.28	LYP 1.08 2.70 2.36 4.21 1.17 0.63 0.83	O LYP 1.63 2.50 2.07 4.29 1.30 0.68 1.27	X LYP 1.11 2.66 2.25 4.43 1.10 0.47 0.93	TPSS 1.45 2.50 2.24 3.76 1.43 0.65 2.07	B98 0.77 2.92 2.52 4.72 1.55 0.54 2.33	BMK 3.36 3.50 2.96 5.83 4.01 1.15 2.24	τHCT 1.69 2.98 3.01 2.84 2.50 1.57 1.31	H HCTH407 1.99 2.83 2.82 2.88 2.20 2.35 1.02
Exch Corr Grut W4- nor MR DBH s22° Pd MB	nange relation obs 08 ^b n MR R 124	LYP 1.12 2.64 2.27 4.30 1.11 0.52 0.92 4.53	mP <u>PW91</u> 1.15 2.48 2.32 3.31 1.26 0.48 1.42 3.50	W P86 1.02 2.28 1.97 3.65 1.12 0.40 1.51 3.43	PBE 1.21 2.55 2.40 3.31 1.29 0.51 1.48 3.51	PBE 1.09 2.63 2.53 3.21 1.32 0.44 1.24 3.53	HS <u>PW91</u> 1.05 2.56 2.44 3.21 1.29 0.43 1.19 3.52	E P86 0.91 2.34 2.05 3.68 1.10 0.36 1.28 3.61	LYP 1.08 2.70 2.36 4.21 1.17 0.63 0.83 4.57	O LYP 1.63 2.50 2.07 4.29 1.30 0.68 1.27 4.29	X LYP 1.11 2.66 2.25 4.43 1.10 0.47 0.93 4.50	TPSS 1.45 2.50 2.24 3.76 1.43 0.65 2.07 4.47	B98 0.77 2.92 2.52 4.72 1.55 0.54 2.33 4.10	BMK 3.36 3.50 2.96 5.83 4.01 1.15 2.24 3.93	τHCT 1.69 2.98 3.01 2.84 2.50 1.57 1.31 4.93	H HCTH407 1.99 2.83 2.82 2.88 2.20 2.35 1.02 4.90

Table 2: Statistical errors (in kcal/mol) over the training sets for the DSD-DFT with different functional combinations, in their optimal parameters.^a

^a Including D2 dispersion correction.
 ^b Full W4-08 set, and discrimination between high- and low- multireference systems.
 ^c Including one half the counterpoise correction.

	Exchang	ge		S			B88						PBE				
	Correlati	ion	VWN5	P86	LYP	PBE	VWN5	LYP	PBE	P86	PW91	VWN	5 LYF	P PBE	P86	PW91	
	CS		0.11	0.00	0.00	0.00	0.72	0.43	0.13	0.24	0.15	0.67	0.4	0 0.12	0.23	0.14	
	c _o		0.58	0.74	0.68	0.77	0.48	0.46	0.51	0.49	0.50	0.47	0.5	0 0.53	0.51	0.51	
	S ₆		0.28	0.14	0.17	0.17	0.48	0.35	0.54	0.41	0.53	0.44	0.2	8 0.42	0.29	0.40	
	C _C		0.34	0.22	0.29	0.22	0.48	0.55	0.56	0.49	0.56	0.48	0.5	0.51	0.45	0.52	
-	c _x		0.29	0.23	0.25	0.22	0.24	0.29	0.35	0.33	0.35	0.26	0.2	8 0.34	0.32	0.34	
Excl	nange		mP	W			HSE				Х	TPSS	B98	вмк	нстн	HCTH407	
Corr	elation	LYP	PW91	P86	PBE	PBE	PW91	P86	LYP	LYF	P LYP						
\mathbf{C}_{S}		0.41	0.14	0.24	0.12	0.12	0.15	0.23	0.40	0.38	3 0.42	0.30	0.34	0.35	0.41	0.43	
\mathbf{c}_{O}		0.48	0.51	0.51	0.51	0.52	0.52	0.50	0.49	0.47	0.47	0.57	0.56	0.79	0.56	0.55	
S ₆		0.31	0.47	0.34	0.48	0.39	0.39	0.27	0.26	0.58	3 0.33	0.28	0.00	0.14	0.30	0.52	
~		0 53	0 54	0.46	0.54	0.52	0.52	0.46	0.51	0.55	5 0.54	0.45	0.55	0.31	0.46	0.52	
CC		0.00	0.04	0.40	0.01	0.0-	0.0-										

Table 3: Parameters of the DSD-DFT with different functional combinations, with D2 dispersion correction.

Table 4: Optimal parameters and statistical errors (in kcal/mol) for DOD-DFT.

	B-LYP	PBE-PBE
CS	0	0
CO	0.54	0.51
S 6	0.98	0.53
CC	0.59	0.56
c _X	0.36	0.38
Grubbs	1.50	1.18
W4-08	4.53	2.92
non MR	4.42	2.85
MR	5.13	3.31
DBH24	1.11	1.10
s22	2.06	0.52
Pd	1.56	1.35
MB	6.15	3.95
Mean	2.82	1.84

	Raw ^a	D2 ^b	D3BJ ^c
RG6	0.24	0.09	0.06
ACONF	0.30	0.12	0.02
ADIM6	1.62	0.19	0.12
S22	1.29	0.26	0.21
CYCONF	0.14	0.11	0.18
SCONF	0.51	0.23	0.26
PCONF ^d	0.98	0.30	0.25
S22+	0.70	0.14	0.11
RMSD ^e	0.63	0.16	0.13

Table 5: RMSD for the S130 set of long range interactions with DSD-PBEP86 (in kcal/mol), with different dispersion correction methods.

^a No dispersion correction. ^b With s_6 =0.29. ^c With s_6 =0.418, a_2 =5.65 (optimal parameters). ^d With TZVPP basis set. ^e With a weight of 20 for the RG6 set.

Table 6: RMSD for the validation sets (in kcal/mol). Unless specified, all the functionals include D2 dispersion correction.

DSD-DFT	B98	B LYP	В P86	B PBE	B PW91	HSE PBE	mPW LYP	MPW PW91	0 LYP	PBE LYP	PBE PBE	S VWN5	TPSS	X LYP	PBE P86	PBE-P86 D3BJ
NHTBH38	2.74	2.08	2.09	2.12	2.06	2.06	2.07	2.00	2.32	2.14	2.06	2.21	2.47	2.04	1.99	2.18
HTBH38	1.29	1.14	1.13	1.07	1.05	1.15	1.14	1.12	1.05	1.10	1.14	1.28	1.07	1.08	1.21	1.12
H-Bonds	0.41	0.45	0.28	0.34	0.31	0.33	0.56	0.28	0.31	0.62	0.30	0.62	0.24	0.49	0.42	0.38
vdW	0.49	0.43	0.31	0.38	0.36	0.33	0.53	0.30	0.29	0.60	0.30	0.45	0.32	0.45	0.42	0.47
Pericyclic																
ref W1	2.76	3.15	3.22	2.97	2.99	2.59	2.85	2.76	3.45	2.72	2.58	1.93	3.38	2.87	2.06	2.05
ref CBS	1.87	2.06	2.01	2.01	1.98	1.79	1.85	1.82	2.23	1.74	1.80	1.71	2.07	1.85	4.16	1.58
ref Exp	3.52	3.65	3.73	3.87	3.82	3.50	3.40	3.60	4.02	3.29	3.56	3.06	3.86	3.40	2.82	2.51
Alkanes																
TAEs	10.89	3.48	3.18	2.24	2.64	1.18	0.80	1.57	7.28	1.09	1.74	2.48	4.10	0.42	0.99	1.07
Isom.	0.07	0.40	0.45	0.50	0.47	0.29	0.31	0.37	0.52	0.32	0.32	0.22	0.21	0.33	0.25	0.16

Table 7: RMSD for the complete W4-11 validation set (140 molecules), and discriminated between non multi-reference (124 molecules) and multi-reference (16 molecules) character systems, in kcal/mol. Unless specified, all the functionals include D2 dispersion correction.

	B98	B LYP	В Р86	B PBE	B PW91	HSE PBE	mPW LYP	mPW PW91	mPW P86	mPW PBE	PBE PW91	PBE LYP	PBE PBE	S VWN5	TPSS	X LYP	PBE P86	PBE-P86 D3BJ
All	3.16	2.95	2.41	2.75	2.66	2.82	2.80	2.62	2.41	2.73	2.73	2.83	2.81	2.93	2.77	2.78	2.44	2.48
non-MR	2.65	2.55	1.91	2.49	2.27	2.59	2.31	2.28	1.81	2.40	2.42	2.32	2.51	2.61	2.03	2.10	1.92	1.92
MR	2.67	2.45	2.50	2.20	2.40	2.14	2.58	2.29	2.66	2.29	2.27	2.61	2.26	2.31	2.92	2.83	2.55	2.61

Table 8: RMSD (in cm⁻¹) for the HFREQ27 set with selected methods.

DSD	S-VWN5	B-LYP	B-P86	PBE-P86	mPW-P86	B-P86	PBE-P86
Basis set	apc2+2d	apc2+2d	apc2+2d	apc2+2d	apc2+2d	apc3+d	apc3+d
Unscaled:							
RMSD	18.93	31.78	21.02	19.65	20.64	17.85	16.71
MSD	10.78	20.31	9.45	8.8	9.84	7.5	6.9
Scaled:							
RMSD	15.08	20.48	17.47	16.56	16.85	15.53	14.82
MSD	0.85	-0.99	-0.85	-0.36	-0.66	-0.13	0.23
Scaling factor	0.9948	0.9889	0.9946	0.9952	0.9945	0.9960	0.9965