Electronic Supplementary Information

Investigation of CO₂ Capture Mechanisms of Liquid-like Nanoparticle Organic Hybrid Materials via Structural Characterization

Youngjune Park,^a John Decatur,^b Kun-Yi Andrew Lin^a and Ah-Hyung Alissa Park^{a, *}

^aDepartment of Earth and Environmental Engineering, Chemical Engineering and Lenfest Center for Sustainable Energy, Columbia University, New York, New York 10027

^bDepartment of Chemistry, Columbia University, New York, New York 10027

*Corresponding author: Tel.: 1-212-854-8989; Fax: 1-212-854-7081; Email address: ap2622@columbia.edu

Table of Contents

Figure S1. 2D ¹H-¹³C edited HSQC NMR spectra of Jeffamine M-600 in DMSO-*d*₆ at 298 K.

Figure S2. 2D COSY NMR spectra of (a) Jeffamine M-600 and (b) NOHM-I-PE600 in DMSO-*d*₆ at 298 K.

Figure S3. ATR FT-IR spectrum of NOHM-I-PE600 in the range of bending modes of $-NH_3^+$.

Figure S4. (a) AFM and (b) TEM images of NOHM-I-PE2070 (22 nm SiO₂ core).

- Figure S5. ATR FT-IR Spectra of NOHM-I-PE2070 under elevated CO₂ partial pressure at 298 K. (a) Intensity changes of v_3 band of CO₂ absorption at 2335 cm⁻¹ as a function of pressure (0 – 5.5 MPa). (b) Intensity changes of the absorption bands of C–O (sigma bond) as a function of CO₂ pressure (0 – 5.5 MPa).
- **Figure S6.** ATR FT-IR peak behavior of v_2 band of CO₂ as a function of pressure (0 5.5 MPa) at 298 K.

Figure S1. 2D ¹H-¹³C edited HSQC NMR spectra of Jeffamine M-600 in DMSO-*d*₆ at 298 K. Red contour exhibits carbons of CH or CH₃ (up) whereas blue contour is associated with CH₂ (down). Peaks in the range of $\delta_{\rm H} = 3.70 - 2.86$ ppm of horizontal ¹H spectra correspond to CH and CH₂ protons of Jeffamine M-600.

Figure S2. 2D COSY NMR spectra of (a) Jeffamine M-600 and (b) NOHM-I-PE600 in DMSO- d_6 at 298 K.

Figure S3. ATR FT-IR spectrum of NOHM-I-PE600 in the range of bending modes of $-NH_3^+$.

Figure S4. (a) AFM and (b) TEM images of NOHM-I-PE2070 (22 nm SiO₂ core). For the AFM measurements, NOHM-I-PE2070 was dissolved into acetone (7 mg/ml) and the solution was spin-coated at 4000 rpm on a freshly cleaved mica substrate (V–4 grade muscovite). The sample was mounted on the AFM and scanned using a silicon probe (PPP-NCHR, NANOSENSORSTM (Switzerland)) with a resonance frequency of ~ 300 kHz and a force constant of 42 N/m.

Figure S5. ATR FT-IR Spectra of NOHM-I-PE2070 under elevated CO₂ partial pressure at 298 K. (a) Intensity changes of v_3 band of CO₂ absorption at 2335 cm⁻¹ as a function of pressure (0 – 5.5 MPa). (b) Intensity changes of the absorption bands of C–O (sigma bond) as a function of CO₂ pressure (0 – 5.5 MPa). MPa).

Figure S6. ATR FT-IR peak behavior of v_2 band of CO₂ as a function of pressure (0 – 5.5 MPa) at 298 K.