Supporting Information for

All-Metal Aromatic Clusters M_4^{2-} (M = B, Al, and Ga). Are π -Electrons Distortive or Not?

Jordi Poater,¹ Ferran Feixas,¹ F. Matthias Bickelhaupt,^{2,*} and Miquel Solà^{1,*}

¹ Institut de Química Computacional and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain (Fax: +34 - 972 - 41 83 56. E-mail: miguel.sola@udg.edu)

² Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands (Fax: +31-20-59 87 629. E-mail: <u>F.M.Bickelhaupt@vu.nl</u>)

Contents

Table S1. Bond-energy decomposition of all-metal clusters B_4^{2-} , AI_4^{2-} and Ga_4^{2-} and the organic systems C_4H_4 , $C_4H_4^{2+}$ and $C_4H_4^{2-}$ constructed from two equivalent rigid fragments as defined in Figure 1, computed at BP86/TZ2P.

Table S2. Cartesian coordinates of all stationary points occurring in this study, computed at BP86/TZ2P.

	B4 ²⁻	Al ₄ ²⁻	Ga ₄ ²⁻	C ₄ H ₄	$C_4 H_4^{2+}$	C ₄ H ₄ ²⁻
$\Delta E_{oi}(\sigma)$	-710.03	-180.11	-153.34	-747.36	-827.42	-707.02
$\Delta E_{oi}(\pi)$	-65.47	-26.83	-24.64	-108.53	-121.41	-325.22
ΔE_{oi}	-775.51	-206.96	-177.98	-855.87	-948.83	-1032.25
ΔE_{Pauli}	784.44	245.15	250.45	665.37	684.66	549.92
ΔV_{elstat}	-211.43	-110.38	-128.62	-438.33	-257.36	-286.90
ΔE_{int}	-202.49	-72.18	-56.15	-628.83	-521.53	-769.23
R(X-X)	1.657	2.603	2.641	1.582	1.452	1.478
				1.338		
θ	90.0	90.0	90.0	99.5	90.0	90.0

Table S1. Bond-energy decomposition (in kcal/mol) of all-metal clusters B_4^{2-} , AI_4^{2-} and Ga_4^{2-} and the organic systems C_4H_4 , $C_4H_4^{2+}$ and $C_4H_4^{2-}$ constructed from two equivalent rigid fragments as defined in Figure 1, computed at BP86/TZ2P.

Table S2. Cartesian coordinates (in Å) of all stationary points occurring in this study, computed at BP86/TZ2P.

B4 ²⁻ B B B B	1.171683 0.000000 -1.171683 0.000000	0.000000 1.171683 0.000000 -1.171683	0.000000 0.000000 0.000000 0.000000
Al4 ²⁻ Al Al Al Al Al	1.840918 0.000000 -1.840918 0.000000	0.000000 1.840918 0.000000 -1.840918	0.000000 0.000000 0.000000 0.000000
Ga4 ²⁻ Ga Ga Ga Ga	1.321174 1.321174 -1.321174 -1.321174 -1.321174	1.321174 -1.321174 -1.321174 1.321174	0.000000 0.000000 0.000000 0.000000
C₄H₄ C C C H H H	0.000000 1.021364 0.000000 -1.021364 -2.106958 0.000000 2.106958 0.000000	-1.021364 0.000000 1.021364 0.000000 0.000000 2.106958 0.000000 -2.106958	0.000000 0.000000 0.000000 0.000000 0.000000
C ₄ H ₄ ²⁻ C H C H C H C H	0.739130 1.519701 0.739130 1.519701 -0.739130 -1.519701 -0.739130 -1.519701	0.739130 1.519701 -0.739130 -1.519701 -0.739130 -1.519701 0.739130 1.519701	0.000000 0.000000 0.000000 0.000000 0.000000

$C_4H_4^2$	+		
С	1.026470	0.000000	0.000000
Н	2.128695	0.000000	0.000000
С	0.000000	1.026470	0.000000
Н	0.000000	2.128695	0.000000
С	-1.026470	0.000000	0.000000
Н	-2.128695	0.000000	0.000000
С	0.000000	-1.026470	0.000000
Н	0.000000	-2.128695	0.000000