
Supporting Information: Non-photochemical laser-induced nucleation of supercooled glacial acetic acid

Martin R. Ward, Stephanie McHugh, Andrew J. Alexander* School of Chemistry, University of Edinburgh, Edinburgh, Scotland, EH9 3JJ e-mail: andrew.alexander@ed.ac.uk

1. Near-infrared absorbance of acetic acid

The near-infrared absorption of glacial acetic acid (GAA) was measured using a spectrometer (Perkin–Elmer, Lambda 900). The heat capacity ($C_p = 1.930 \text{ J g}^{-1} \text{ K}^{-1}$) and density ($\rho_L = 1.080 \text{ g} \text{ cm}^{-3}$) of GAA at –9 °C were estimated by fitting and extrapolation of data from the literature.^{1, 2} For a single pulse at a peak power of 40 MW cm⁻², the energy absorbed by acetic acid in the illuminated volume (0.046 cm³) corresponds to a temperature rise of 6 mK; at 900 MW cm⁻², the rise is 0.14 K. We assume that convection and conduction are sufficiently fast to allow redistribution of heat throughout the entire volume of the sample (2 cm³). At a peak power of 40 MW cm⁻², the energy absorbed by acetic acid model to a temperature rise of 14 mK for 100 pulses.

Figure S1. Plot of the near-infrared absorption coefficient of water and acetic acid. The absorption coefficients at 1064 nm, marked by the arrow, are 0.144 cm^{-1} (water, Kou et al.³) and 0.0370 cm^{-1} (acetic acid, present work).

2. Refractive indices of acetic acid

The refractive indices of GAA at 1064 nm and -9 °C are not readily available, therefore we estimated them by extrapolation from available data in the literature. For the liquid, we extrapolate measurements of El-Kashef to find $n_{\rm L} = 1.3614$ (at 1064 nm, -9 °C).⁴ For the solid, we use the Lorenz–Lorentz relation to estimate $n_{\rm S}$ from $n_{\rm L}$ at a specific frequency and temperature, using the densities of the solid ($\rho_{\rm S} = 1.274$ g cm⁻³ by interpolation from literature data¹) and the liquid ($\rho_{\rm L} = 1.080$ g cm⁻³).⁵ We calculate $n_{\rm S} = 1.4357$ at 1064 nm, which is in very good agreement with our calculations for a crystalline cluster consisting of 27 unit cells using the semi-empirical PM6–DH+ method (n = 1.4385).⁶⁻⁸

- 1. U. Westhaus, T. Dröge and R. Sass, *Fluid Phase Equilibria*, 1999, **158-160**, 429-435.
- 2. F. Comelli, M. C. Righetti and R. Francesconi, *Thermochim. Acta*, 1997, **306**, 37-43.
- 3. L. H. Kou, D. Labrie and P. Chylek, *Appl. Optics*, 1993, **32**, 3531-3540.
- 4. H. El-Kashef, *Physica B*, 2000, **279**, 295-301.
- 5. S. de Jong, F. Groeneweg and F. V. Vader, J. Appl. Crystallogr., 1991, 24, 171-174.
- 6. M. Korth, J. Chem. Theor. Comput., 2010, **6**, 3808-3816.
- 7. J. J. P. Stewart, J. Mol. Modeling, 2007, **13**, 1173-1213.
- 8. J. J. P. Stewart, *MOPAC2009*, (2008) Stewart Computational Chemistry, Colorado Springs, CO, USA.