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Experimental Section 

a. Synthesis of tetrabutylammonium selenocyanate (TBASeCN) 

All chemicals were used as received. Silver nitrate (AgNO3; 2 g, 12 mmol; Sigma, 99%) dissolved in 30 ml distilled water reacted at ambient 
conditions with potassium selenocyanate (KSeCN; 1.7 g, 12 mmol; Sigma, 99%) in 20 ml distilled water, yielding solid-state silver 
selenocyanate (AgSeCN), fitered with excess distilled water. After dispersing AgSeCN in 40 ml distilled water, the solution was stirred with 
tetrabutylammonium iodide (TBAI; 3.05 g, 8.25 mmol; Sigma, 99%) in 10 ml of methanol (MeOH) for 1 hr. Then, silver iodide (AgI) was 
removed by filtration and the solvents evaporated under vaccum. Adding diethyl ether (Et2O) into the product, the solution was refrigerated for 
recrystallization. Yield: 73 %. 1H NMR (CDCl3, δ/ppm relative to TMS): 0.95 (q, 3H), 1.41 (m, 2H), 1.60 (m, 2H), 3.17 (m, 2H). ATR-FTIR: 
2961s [ν(CH3)], 2092s [ν(SeCN)], 1481m [ν(CH2)], 1380m [ν(CH3)], 1707s, 884s [(CN)]. 

[Reference: a) P. Bonhte, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem. 1996, 35, 1168-1178; b) J. M. Pringle, 
J. Golding, C. M. Forsyth, G. B. Deacon, M. Forsyth, D. R. MacFarlane, J. Mater. Chem. 2002, 12, 3475-3480.] 

 
 

b. Preparation of I-/(SeCN)2 redox couple 

In preparation of (SeCN)2, first KSeCN (0.288 g, 2 mmol) reacted overnight with bromine (Br2; 0.160 g, 1 mmol; Sigma, 99%) in a mixture 
of acetonitrile (AN) and ethylene carbonate (EC) (20 ml, 1:1, v/v) at sub-zero temperatures (< 0 ℃) and under dark conditions, yielding 
(SeCN)2 (0.21 g, 1 mmol) and potassium bromide (KBr) in an AN/EC solution (20 ml). The sedimented KBr was removed by filtration and 
subsequently the (SeCN)2 solution was mixed with TBAI for the generation of an I-/(SeCN)2 redox couple. When TBAI was combined with the 
(SeCN)2 solution, the color changed immediately from yellow to dark brown, which is quite similar to an I-/I3

- solution. 

[Reference: a) G. A. Bowmaker, P. A. Kilmartin, G. A. Wright, J. Solid State Electrochem. 1999, 3, 163-171; b) C. J. Burchell, P. Kilian, A. M. 
Z. Slawin, J. D. Woollins, Inorg. Chem. 2006, 45, 710-716.] 

 
 

c. Preparation of electrolyte 

Both of 0.5 M 4-tert-butylpyridine (tBP) and 0.1 M guanidium thiocyanate (GTC) dissolved in AN/EC (1:1, v/v) were in common used and 
all electrolytes have different kinds of redox species. Electrolyte I contains 0.6 M TBAI, 0.05 M I2; Electrolyte II 0.6 M TBASeCN, 0.05 M 
(SeCN)2; Electrolyte III 0.6 M TBAI, 0.05 M (SeCN)2; Electrolyte IV 0.6 M TBAI, 0.01 M (SeCN)2; Electrolyte V 0.6 M TBAI, 0.025 M 
(SeCN)2; Electrolytes A and C 0.6 M TBAI, 0.1 M I2; Electrolytes B and D 0.6 M TBAI, 0.075 M I2, 0.025 M (SeCN)2; Electrolyte E 0.6 M 
TBAI, 0.09 M I2, 0.01 M (SeCN)2; Electrolyte F 0.6 M TBAI, 0.05 M I2, 0.05 M (SeCN)2. 

 
 

d. Solar cell fabrication 

Fluorine-doped tin oxide (FTO) glass (Pilkington, 15 Ω/square) substrates were rinsed with a Helmanex solution, acetone and ethanol in this 
sequence in an ultrasonic bath for 15 min. To deposit a TiO2 blocking layer on the FTO glass, the cleaned FTO glass substrates were treated 
with a 0.5 mM TiCl4 solution for 20 min. at 70 ℃, followed by an annealing process for 30 min. at 450 ℃. Next, a 12 µm thick TiO2 layer was 
coated with the shape of a square active area, 0.25 cm2, on the FTO glass by the doctor-blade technique with commercial TiO2 paste (Dyesol, 18 
NR-T). After annealing the TiO2-coated FTO glass, TiCl4 treatment was repeated again with the method corresponding to the previous 
treatment. Then, the substrates were immersed into a dye solution composed of 0.5 mM N719 (Dyesol) dye dissolved in AN/tert-butanol 
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(t-BuOH) (1:1, v/v) for 18 hrs. After adsorption of dye to the TiO2 layer, TiO2 substrates were combined with counter substrates covered by 
sputtered platinum film through a hot-pressing process. The distance between the two substrates was maintained with Surlyn (Solaronix, 25 
µm), a polyester material. The electrolyte was injected through the hole in counter substrates and the DSCs were sealed by sealants. For the 
fabrication of Devices C and D, 0.5 M CDCA (Solaronix) coadsorbent was additionally dissolved in a dye solution and a 4 µm thick scattering 
layer was deposited onto a 12 µm thick TiO2 layer by the doctor-blade technique with commercial TiO2 paste (Dyesol, WER 2-O). 

 
   
UV-vis spectroscopy 

UV-visible absorption spectra of the electrolytes were obtained by JASCO UV-vis spectrometer (Model V-670) with a 5 nm resolution. The 
spectra were fitted with Lorentz transformation for calculation of the absorption area in the range of 350 – 400 nm. Electrolytes I, II and III were 
diluted 5000 times by AN/EC (1:1, v/v). 
 
 
Cyclic voltammetry (CV) 

CV measurement was conducted at a scan rate of 50 mV/s with the help of a potentiostat/galvanostat (Autolab PGSTAT 302N) under 
ambient conditions. A conventional three-electrode cell with a platinum disc as a working electrode, a platinum foil as a counter electrode, and 
an Ag/AgCl (3 M saturated KCl solution) reference electrode was used with 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6, Sigma, 
99%) as a supporting electrolyte. The system was calibrated by a ferrocene/ferrocenium (Fc/Fc+) redox couple. For the estimation of Eredox, the 
solutions composed of 10 mM TBAI, 1 mM I2 in AN/EC (1:1, v/v) and 10 mM TBAI, 1 mM (SeCN)2 in AN/EC (1:1, v/v) were prepared, 
respectively. Because of the unknown composition of the redox species in TBAI/(SeCN)2, we estimated the EF,redox from the formal potential 
(E0') in the Nernst equation. The E0' of TBAI/I2 and TBAI/(SeCN)2 was 0.23 V and 0.27 V (vs Ag/AgCl) or 0.42 V and 0.46 V (vs NHE, 25 ℃) 
from the 1st cyclic voltammogram in Fig. S1 and Fig. 1d, respectively (for reference, the EF,redox of (SeCN)-/(SeCN)2 redox couple was moved 
down by 0.19 V, compared to I-/I3

-). 

 [Reference: G. Oskam, B. V. Bergeron, G. J. Meyer, P. C. Searson, J. Phys. Chem. B 2001, 105, 6867-6873] 

 
Fig. S1. Cyclic voltammograms (100 cycles) of TBAI/I2. 

 
 
Current-voltage (J-V) characteristics & Photocurrent response 

The J-V performances of DSCs were measured under 1 sun conditions (AM 1.5G, 100 mW/cm2) shaded with a 0.25 cm2 mask (the same as 
the active cell area) using a solar simulator (Newport) equipped with a 300 W Xenon lamp and a Keithley (Model 2,400) source meter, after 
calibrating with a silicon reference cell. Photocurrent response spectra were recorded for 5 seconds by the support of a solar simulator (Newport) 
and a potentiostat/galvanostat (Autolab, PGSTAT 302N). The J-V characteristics of Devices I, II, III, IV, V, A, B, C, D, E and F were carried 
out as changing the concentration of the oxidized species. 
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Fig. S2. J-V curves of Devices I, II, III, IV and V under (a) dark and (b) illumination conditions. 

 
 

Table S1. J-V data of Devices IV, V, E and F. 

Devices[a] Redox species VOC 
[V] 

JSC 
[mA/cm2] FF η 

[%] 

IV 0.6 M TBAI,  
0.01 M (SeCN)2 

0.77 11.1 0.59 5.0 

V 0.6 M TBASeCN, 
0.025 M (SeCN)2 

0.77 10.9 0.62 5.2 

E 
0.6 M TBAI,  

0.09 M I2 and 
 0.01 M (SeCN)2 

0.75 11.3 0.68 5.7 

F 
0.6 M TBAI,  

0.05 M I2 and 
 0.05 M (SeCN)2 

0.73 11.1 0.72 5.8 

[a] with the electrolyte containing 0.5 M tBP and 0.1 M GTC, and without a  
co-adsorbent and a scattering layer. 

 
 

In the case of Devices C and D, a co-adsorbent (Solaronix, CDCA) and a scattering layer (Dyesol, WER 2-O) were adopted additionally in 
Devices A and B, respectively, for efficiency improvement. 
 
 

 
Fig. S3. J-V curves of Devices A, B, C, D, E and F under (a) dark and (b) illumination conditions. 
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Charge extraction (CE) & Open-circuit voltage decay (OCVD) 

The combination of CE and OCVD methods is an effective way to determine an average lifetime for electrons in a TiO2 layer. 

For the measurement of CE, Zahner CIMPS system was applied to measure the amount of charge stored in a TiO2 layer, depending on VOC. 
Initially, DSCs were illuminated with a red LED light for 5 seconds at open-circuit conditions and then the light was immediately switched off 
automatically. After a delay time of milliseconds or seconds, i.e. voltage decay time, the circuit condition of DSCs was altered to short-circuit 
condition and the simultaneously extracted charge (Qex) and the VOC were measured.  

For the measurement of OCVD, a solar simulator (Newport) and a potentiostat/galvanostat (Autolab, PGSTAT 302N) were used. The 

electron lifetimes (τe) were calculated according to equation S1: 

 

 
 
where kB is the Boltzmann constant, T the absoulte temperature, and q the elementray charge. After combining two relations from CE and 

OCVD methods, τe can be expressed by Qex as shown in Fig. 2. 

[Reference: a) B. C. O’Regan, J. R. Durrant, Accounts Chem. Res, 2009, 42, 1799-1808; b) N. Kopidakis, N. R. Neale, A. J. Frank, J. Phys. 
Chem. B 2006, 110, 12485-12489; c) J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, S. Giménez, J. Phys. Chem. C 2009, 
113, 17278-17290.] 

 
 
Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) was supported by a potentiostat/galvanostat (Autolab PGSTAT 302N). 
 
 

a. Ionic conductivity 

To obtain the information about the ionic conductivities of Electrolytes I, II and III, we equipped a lab-made four-probe conductivity cell 
suggested in the reference. After obtaining the data of electrolyte resistances (Rs), the conductivities were calculated by the following equation 
S2: 

 

where σ is the conductivity (S/cm) of electrolyte, l the length (cm) of electrolyte, Rs the solution resistance (Ω or S-1) and S the surface area of 
electrode (cm2). 

 [Reference: J. H. Kim, M.-S. Kang, Y. J. Kim, J. Won, Y. S. Kang, Solid State Ionics 2005, 176, 579–584] 
 
 
b. Impedance parameters & Lifetime 

The impedance spectra of Devices I, II and III were measured varying the frequency from 1 MHz to 10 mHz with the direct current (DC) 
voltage at their respective VOC of the cells and the alternating current (AC) voltage at 20 mV were obtained under 1 sun illumination conditions. 
The data from the Nyquist plots (Fig. 4) were simulated with Z-View software (Solartron Analytical) to estimate all parameters including the 
resistance. 

 
Table S2. Impedance parameters of Devices I, II and III.[a] 

Devices 
RPt 
[Ω] 

RD 
[Ω] 

Rrec 
[Ω] 

I 13.5 7.2 15.9 
II 7.9 2.9 9.0 
III 10.3 6.6 12.9 

[a] RPt: charge transfer resistance at cathode, 
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RD: diffusion resistance in electrolyte,  
Rrec: recombination resistance at photoanode. 

 

 

The electron lifetime (τe) of Devices I, II and III was 0.011, 0.0011 and 0.0072 (s), respectively, according to the following equation S3: 

 

where fmax is the frequency at the mid-frequency peak in Bode plot. The τe values obtained from the EIS method showed the same trend with 
those from the combination of CE and OCVD methods as shown in Fig. 2. It seems that the EIS method caused the difference in the τe value 
between Devices I and II to be 10 times at a given Voc for each cell measured at 1 sun codistions. However, the degree of difference will be 
varied depending on position of reference points (e.g. 0.4 V vs 0.6 V) and kind of variables at x-axis (voltage or charge density or etc.) because 
the electron recombination kinetics of Devices I and II is different, in this case, from each other. 

 
Fig. S4. Bode plots of Devices I, II and III. 

 
 

c. Conduction band (CB) edge movement 

For recording the stored charge (QS) in a broad range, the DC voltage was altered periodically from 0 V to their respective VOC of the cells 
under dark conditions and the quasi-femi level, EF,n was obtained from the relation, VOC = |EF,n - Eredox| as shown in Fig. S5. A noticeable 
variation of the CB edge position between Devices I and II was observed, whereas there was little offset between Devices I and III. 

[Reference: H. Tian, Z. Yu, A. Hagfeldt, L. Kloo, L. Sun, J. Am. Chem. Soc., 2011, 133, 9413–9422.] 
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Fig. S5. Stored charge (Qs) as a function of quasi-Fermi level (Ef,n) of Devices I, II and III. 

 
 
Incident photon-to-current conversion efficiency (IPCE) 

IPCE spectra of DSCs were recorded in the range of 300 nm and 800 nm, with an interval of 10 nm, using a monochromatic halogen light and 
additional illuminating white bias light source in the device (PV Measurements Inc., QEX7), after calibration by a silicon reference cell. 
Because the illuminated area onto DSCs by monochromatic halogen light was a little larger than the active area (0.25 cm2) of DSCs, the 
integrated IPCE values slightly were lower than the JSC measured from solar simulator. 
 

 

Intensity-modulated photocurrent spectroscopy (IMPS) 

IMPS measurement was carried out to obtain electron transport time in a TiO2 layer on a Zahner CIMPS system. The red LED light with a 
maximum wavelength at 670 nm was exposed on DSCs. The intensity of AC light is kept at 10 % of the intensity of DC light and the DSCs were 
maintained at short-circuit conditions during the measurement. The transport time constant (τtr) was regarded as the IMPS time constant (τIPMS) 
and is calculated by the following relationship S4: 

 

where fmin (Hz) is the frequency at the minimum point of an imaginary part. 
The τtr values measured from the IMPS were not very different among the three devices 

[Reference: H. Paulsson, L. Kloo, A. Hagfeldt, G. Boschloo, J. Electroanal Chem., 2006, 586, 56–61] 
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Fig. S6. Electron transport time (τtr) as a function of JSC of Devices I, II, and III.  

 
 
Long-term stability test 

The stability result of Device III implies that the initial efficiency almost maintained over 700 h at ambient conditions. 
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Fig. S7. Stability test of Device III. 
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