A theoretic insight on catalytic activity promotion of CeO₂ surface by Mn doping

Wanglai Cen, Yue Liu*, Zhongbiao Wu*, Haiqiang Wang, Xiaole Weng

Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China

E-mail: yueliu@zju.edu.cn (Y. Liu); zbwu@zju.edu.cn (Z. B. Wu)

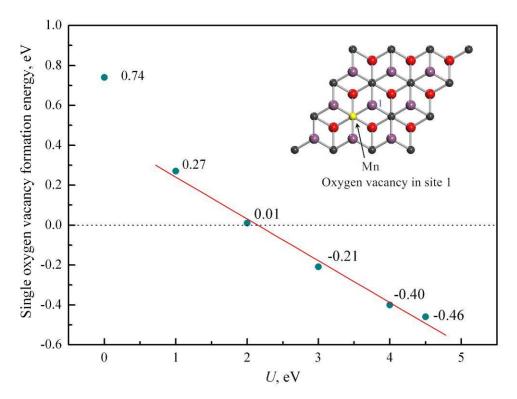


Fig. S1 Single oxygen vacancy formation energy for $U = 0 \sim 4.5$ eV. The formation energies were labeled with aside the data points. Inset: oxygen vacancy site in MnCe labeled 1.

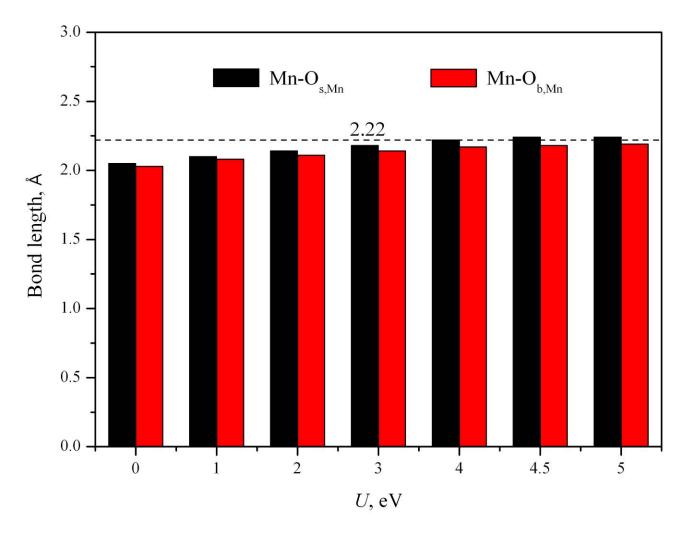


Fig. S2 Selected Mn-O bond lengths in vMnCe with oxygen vacancy in site 1.

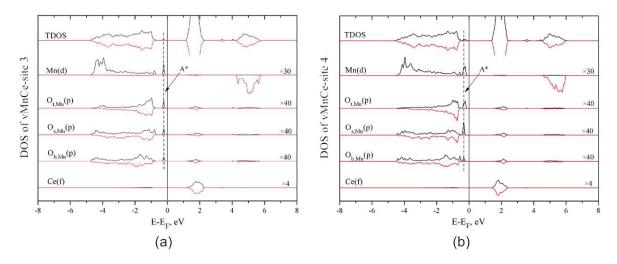


Fig. S3 Total and partial DOS of vMnCe with oxygen vacancy in site 3 and 4. The blue dashed lines labeled as A^* are Mn 3*d*-O 2*p* gap states acting as electrons buffer instead of Ce 4*f*. Fermi level is set to be zero point.

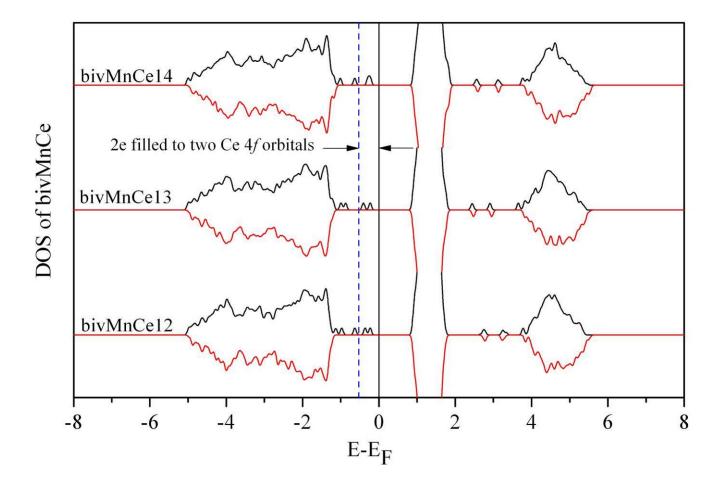


Fig. S4 DOS of bivMnCe with two oxygen vacancies at sites 1-2, 1-3 and 1-4. All the populations of the occupied Ce 4f states are 2 e by DOS integration.

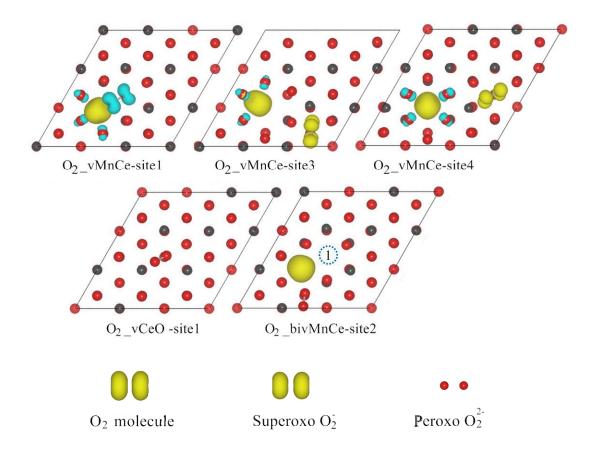


Fig. S5 Spin charge density of: O_2_vMnCe with O_2 molecule adsorbed at oxygen vacancy site 1, 3 and 4, $O_2_vCeO_2$ at site 1, $O_2_bivMnCe$ at site 2, free O_2 molecule, superoxo O_2^- , and peroxo O_2^{2-} . The isovalue is 0.05 e/Å³. The *p*-like spin-polarized charge density distribution of the adsorbed O_2 on vMnCe indicates O_2^- specie. The spin-unpolarized charge density distribution of the adsorbed O_2 on bivMnCe and vCeO2 indicates O_2^{2-} specie.

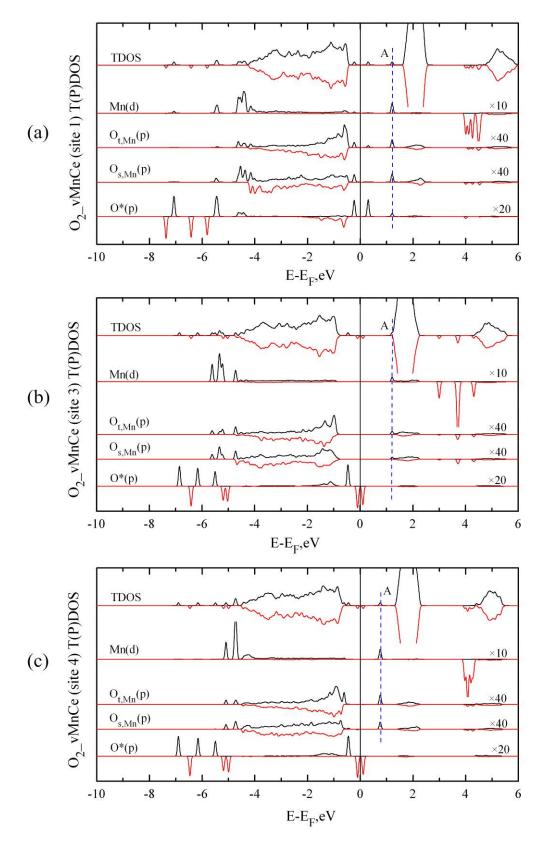


Fig. S6 DOS of O₂_vMnCe with oxygen molecule adsorbed on different vacancy sites. Mn 3*d*-O 2*p* gap state is marked by the dashed line A.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Items	vMnCe		MnCe		
Wigner Seitz radius, Å	default ^c	1^d	default	1	
Mn 3 <i>d</i> in VB, e	4.73	4.29	4.45	4.07	
Mn 3 <i>d</i> -O 2 <i>p</i> gap state in PDOS, e					
$O_{t,Mn} 2p$	0.167	0.185	0.194	0.214	
$O_{s,Mn} 2p$	0.171	0.187	0.133	0.145	
${ m O}_{ m b,Mn}2p$	0.108	0.118	-	-	
$(O_{t,Mn}+O_{s,Mn})\times 3^a$	-	-	0.981	1.077	
$O_{b,Mn} 2p + O_{t,Mn} 2p \times 2 + O_{s,Mn} 2p \times 3^{b}$	0.955	1.049	-	-	
Mn 3d	0.383	0.373	0.317	0.311	
Sum	1.338	1.422	1.298	1.388	
Mn 3 <i>d</i> -O 2 <i>p</i> gap state in TDOS, e	1.999	1.999	1.999	2.000	

Table S1 Population with	different Wigner Se	itz radiuses for MnCe	and vMnCe at U	= 4.5 eV for Mn 3d.

a: the MnCe slab is in $C_{3\nu}$ symmetry, so there are three equivalent atoms each of the $O_{t,Mn}$ and $O_{s,Mn}$ atoms;

b: there are one $O_{b,Mn}$ atom, two $O_{t,Mn}$ atoms and three $O_{s,Mn}$ atoms as shown in Fig. 1a and b.

c: all the radiuses are employed as default in the pseudopotential files: Mn 1.323 Å, Ce 1.323 Å, O 0.820 Å.

d: all the radiuses for Ce, Mn and O atoms are set to be 1 Å.

Table S2 Calculated properties of adsorbed	l O ₂ and Mn in	O ₂ _vMnCe
--	----------------------------	-----------------------

Adsorption site	Bond length, Å		Magnetic moment, μ_B		
		Stretching frequency, cm ⁻¹	O_2^*	Mn	Mn in vMnCe
1	1.32	1134	-1.04	4.09	4.70
3	1.35	1119	0.92	3.90	4.71
4	1.34	1119	0.93	4.12	4.72