Where to bind in buckybowls? The dilemma of a metal ion

Dolly Vijay,^{a,c} Hidehiro Sakurai,^b V. Subramanian^c and G. Narahari Sastry^{*}a

^aMolecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500 007, INDIA
 ^bResearch Center for Molecular-Scale Nanoscience, Institute for Molecular Science, Myodaiji, Okazaki 444-8787, JAPAN
 ^cCentral Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai
 600 020, INDIA

gnsastry@gmail.com

Supporting Information

(18 pages including this page)

Figure S1: Correlation between the cation– π distance and the interaction energy of the (a) Li⁺ and (b) Na⁺ (c) K⁺ and (d) Cu⁺ complexes.

Figure S2: The correlation between the interaction energies of the a)Li⁺, b)Na⁺, c)K⁺, and d)Cu⁺ complexes of sumanene at various levels of theories.

Figure S3: The correlation between the interaction energies of the a)Li⁺, b)Na⁺, c)K⁺, and d)Cu⁺ complexes of corannulene at various levels of theories.

Table S1: The geometrical parameters (in Å) of the buckybowl complexes of sumanene (1) and corannulene (2) with Na⁺ and K⁺ ions evaluated at the M05-2X level in conjugation with the cc-pVDZ and $6-31G^*$ basis sets.

Table S2: The inversion barriers ($\Delta E^{\#}$ in kcal/mol) of various complexes considered in the study evaluated at the M05-2X/cc-pVDZ level. The 6-31G* basis set was used for the K⁺ complexes alone.

Table S3: The charge on the cation calculated using different schemes viz. Mulliken (q1 in a.u.), NPA (q2 in a.u.) and CHelpG (q3 in a.u.), charge density (ρ *10²), Laplacian of the charge density (∇ ² ρ *10²) at the (3,+3) cage critical point of the complexes of sumanene (1) and corannulene (2) with different ions. The calculations were performed at the M05-2X-cc-pVDZ level. The 6-31G* basis set was employed for **K**⁺ complexes.

Table S4: Summary of the factors contributing to the total bonding interaction in the metal complexes of sumanene (**1**). Calculations were carried out at M05-2X /6-31G(d,p) level using localized molecular orbital energy decomposition analysis (LMO-EDA) as implemented in GAMESS program. All values are provided in kcal/mol.

Table S5: Summary of the factors contributing to the total bonding interaction in the metal complexes of corannulene (**2**). Calculations were carried out at M05-2X/6-31G(d,p) level using localized molecular orbital energy decomposition analysis

(LMO-EDA) as implemented in GAMESS program. All values are provided in kcal/mol.

Table S6: The M05-2X/cc-pVDZ optimized coordinates of the Li⁺ complexes of sumanene (1) and corannulene (2).

Table S7: The M05-2X/cc-pVDZ optimized coordinates of the Cu⁺ complexes of sumanene (1) and corannulene (2).

Table S8: The geometrical parameters (in Å) of the bucky bowl complexes of sumanene (1) and corannulene (2) with Li⁺ ion evaluated at the B3LYP (in plain) and B3LYP-D (in italics) level in conjugation with the cc-pVDZ basis set.

Table S9: Summary of the factors contributing to the total bonding interaction in the Li+ and Cu+ complexes of sumanene (1) and corannulene (2). Calculations were carried out at BLYP-D/ATZP level using ADF program. All values are provided in kcal/mol.

Figure S1: Correlation between the cation $-\pi$ distance and the interaction energy of the (a) Li⁺ and (b) Na⁺ (c) K⁺ and (d) Cu⁺ complexes.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Figure S2: The correlation between the interaction energies of the a)Li⁺, b)Na⁺, c)K⁺, and d)Cu⁺ complexes of sumanene at various levels of theories.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Figure S3: The correlation between the interaction energies of the a)Li⁺, b)Na⁺, c)K⁺, and d)Cu⁺ complexes of corannulene at various levels of theories.

			Na^+								K ⁺			
	\mathbf{r}_1	\mathbf{r}_2	r_3	\mathbf{r}_4	\mathbf{r}_5	r ₆	cation– π	\mathbf{r}_1	\mathbf{r}_2	r ₃	\mathbf{r}_4	r_5	r ₆	cation– π
$1 - \eta_{H-X}^{6}$	1.387	1.398	1.396	1.429	1.442	1.547	2.353	1.384	1.395	1.395	1.427	1.439	1.549	2.758
$1 - \eta_{R-X}^{6}$	1.390	1.404	1.404	1.437	1.433	1.547	2.356	1.386	1.400	1.400	1.433	1.433	1.549	2.770
$1 - \eta_{R-X}^5$			colla	psed to 1	$-\eta_{R-X}^6$			1.382	1.393	1.397	1.425	1.440	1.554	3.027
$1 - \eta_{H-V}^{6}$	1.386	1.403	1.397	1.430	1.443	1.546	2.328	1.383	1.401	1.394	1.429	1.440	1.547	2.691
$1 - \eta_{R-V}^{6}$	$-\eta_{R-V}^6$ collapsed to $1-\eta_{H-V}^6$						colla	psed to 1	$-\eta_{H-V}^6$					
$2 - \eta_{H-X}^5$	1.422	1.384	1.444	1.386			2.400	1.418	1.381	1.444	1.384			2.805
$2 - \eta_{R-X}^{6}$	1.425	1.386	1.451	1.395			2.378	1.421	1.382	1.448	1.391			2.782
$2 - \eta_{H-V}^5$	1.423	1.384	1.448	1.385			2.406	1.420	1.382	1.446	1.383			2.758
$2\!-\eta_{\scriptscriptstyle R-V}^{_6}$	C	collapsed	to $2-\eta_H^5$	-V					collapse	ed to $2-n$	η_{H-V}^5			

Table S1: The geometrical parameters (in Å) of the bucky bowl complexes of sumanene (1) and corannulene (2) with Na^+ and K^+ ions evaluated at the M05-2X level in conjugation with the cc-pVDZ basis set and 6-31G* basis set respectively.

Table S2. The inversion barriers ($\Delta E^{\#}$ in kcal/mol) of various complexes considered in the study evaluated at the M05-2X/cc-pVDZ level. The 6-31G* basis set was used for the K+ complexes alone.

	Li+	Na+	К+	Cu+
1 – η_{H-X}^6	17.72	19.29	17.46	18.64
1 – η_{R-X}^6	18.99	20.17	18.42	20.95
1 – η_{R-X}^5	17.48			-b-
1 – η_{H-V}^6	20.01	21.33	22.79	16.99
1 – η^6_{R-V}	17.11			16.43
2– η_{H-X}^5	11.63	11.12	9.28	11.85
2 – η_{R-X}^{6}	9.20	10.23	8.87	10.51
2 – η_{H-V}^5	11.21	11.41	13.71	7.02
2– η_{R-V}^6	9.26			7.13

Table S3: The charge on the cation calculated using different schemes viz. Mulliken (q1 in a.u.), NPA (q2 in a.u.) and CHelpG (q3 in a.u.), charge density ($\rho^{*}10^{2}$), Laplacian of the charge density ($\nabla^{2}\rho^{*}10^{2}$) at the (3,+3) cage critical point of the complexes of sumanene (1) and corannulene (2) with different ions. The calculations were performed at the M05-2X-cc-pVDZ level. The 6-31G* basis set was employed for **K**⁺ complexes.

Li^+	q1	q2	q3	ρ	$ abla^2 ho$	Na^+	q1	q2	q3	ρ	$\nabla \ ^{2}\rho$
$1 - \eta_{H-X}^6$	0.564	0.948	0.653	1.154	1.519	$1-\eta_{H-X}^6$	0.842	0.985	0.758	0.811	1.016
$1 - \eta_{R-X}^{6}$	0.433	0.914	0.624	1.307	1.728	$1 - \eta_{R-X}^{6}$	0.762	0.975	0.748	0.893	1.106
$1 - \eta_{R-X}^5$	0.564	0.957	0.696	-a-	-a-	$1 - \eta_{R-X}^{5}$		Collaps	sed to $1 - \eta$	$^{6}_{H-X}$	
$1 - \eta_{H-V}^6$	0.441	0.920	0.603	1.465	1.904	$1 - \eta_{H-V}^6$	0.729	0.954	0.681	0.944	1.144
$1 - \eta_{R-V}^{6}$	0.380	0.914	0.593	1.549	2.101	$1 - \eta_{R-V}^{6}$		Collaps	ed to $1 - \eta$	6 <i>H</i> -V	
$2 - \eta_{H-X}^5$	0.575	0.947	0.612	1.477	2.290	$2 - \eta_{H-X}^5$	0.852	0.986	0.712	1.054	1.444
$2 - \eta_{R-X}^6$	0.482	0.927	0.594	1.301	1.650	$2 - \eta_{R-X}^{6}$	0.791	0.979	0.706	0.880	1.042
$2 - \eta_{H-V}^5$	0.496	0.935	0.577	1.713	2.652	$2 - \eta_{H-V}^5$	0.765	0.969	0.673	1.091	1.487
$2 - \eta_{R-V}^{6}$	0.437	0.929	0.580	1.456	1.873	$2\!-\eta_{R\!-\!V}^{6}$		Collaps	ed to $2-\eta$	5 H-V	
\mathbf{K}^+	q1	q2	q3	ρ	$\nabla \ ^{2}\rho$	\mathbf{Cu}^+	q1	q2	q3	ρ	$\nabla \ ^{2}\rho$
$1 - \eta_{H-X}^6$	0.880	0.979	0.727	0.729	0.880	$1 - \eta_{H-X}^6$	0.581	0.936	0.597	2.005	3.012
$1 - \eta_{R-X}^{6}$	0.855	0.976	0.749	0.787	0.960	$1 - \eta_{R-X}^{6}$	0.476	0.895	0.555	2.126	3.418
$1 - \eta_{R-X}^5$	0.889	0.986	0.767			$1 - \eta_{R-X}^5$	0.654	0.934	0.644	-a-	-a-
$1 - \eta_{H-V}^6$	0.803	0.931	0.621	0.890	1.067	$1 - \eta_{H-V}^6$	0.575	0.887	0.601	2.154	3.050
$1 - \eta_{R-V}^{6}$		Colla	psed to 1-	$-\eta_{H-V}^6$		$1 - \eta_{R-V}^{6}$	0.491	0.931	0.565	2.186	3.560
$2 - \eta_{H-X}^5$	0.891	0.983	0.688	0.939	1.147	$2 - \eta_{H-X}^5$	0.604	0.938	0.570	2.917	4.035
$2 - \eta_{R-X}^6$	0.871	0.979	0.716	0.785	0.918	$2 - \eta_{R-X}^6$	0.510	0.906	0.531	2.127	3.344
$2 - \eta_{H-V}^5$	0.824	0.946	0.594	1.060	1.311	$2 - \eta_{H-V}^5$	0.612	0.922	0.587	3.045	3.684
$2 - \eta_{R-V}^{6}$		Colla	psed to 2-	$-\eta_{H-V}^5$		$2 - \eta_{R-V}^{6}$	0.521	0.939	0.558	2.112	3.245

Table S4: Summary of the factors contributing to the total bonding interaction in the metal complexes of sumanene (1). Calculations were carried out at M05-2X /6-31G(d,p) level using localized molecular orbital energy decomposition analysis (LMO-EDA) as implemented in GAMESS program. All values are provided in kcal/mol.

		$1 - \eta_{H-X}^{6}$	$1 - \eta_{R-X}^{6}$	$1 - \eta_{R-X}^5$	$1 - \eta_{H-V}^{6}$	$1 - \eta_{R-V}^{6}$
	Electrostatic	-13.61	-22.89	-13.2	-17.79	-22.3
	Exchange	-2.58	-3.21	-2.89	-3.05	-3.55
Li+	Repulsion	13.03	16.64	14.37	15.76	19.84
	Polarization	-35.70	-35.38	-34.18	-33.1	-34.35
	Dispersion	-6.06	-6.24	-5.34	-11.57	-10.04
_	IE	-44.92	-51.08	-41.24	-49.75	-50.41
	Electrostatic	-15.61	-21.4		-18.94	
	Exchange	-2.11	-2.71		-1.66	
Na+	Repulsion	11.93	14.70		12.99	
	Polarization	-20.4	-19.44	а	-17.17	а
	Dispersion	-7.34	-7.59		-13.31	
_	IE	-33.53	-36.44		-38.08	
	Electrostatic	-15.51	-18.83	-14.51	-18.93	
K+	Exchange	-2.83	-3.94	-3.32	-3.04	
	Repulsion	16.17	18.99	15.38	21.51	
	Polarization	-14.59	-14.32	-13.09	-14.29	а
	Dispersion	-9.34	-9.38	-7.45	-18.52	
	IE	-26.11	-27.48	-23.00	-33.26	
	Electrostatic	-46.10	-63.00	-53.87		-65.21
Cu+	Exchange	-28.39	-35.58	-30.04		-36.49
	Repulsion	92.83	115.13	95.89	b	121.09
	Polarization	-46.09	-49.96	-46.72		-45.35
	Dispersion	-28.02	-29.35	-21.59		-31.63
	IE	-55.77	-62.77	-56.32		-57.59

a) Stationary point not obtained

b) Convergence failure

Table S5: Summary of the factors contributing to the total bonding interaction in the metal complexes of corannulene (**2**). Calculations were carried out at M05-2X/6-31G(d,p) level using localized molecular orbital energy decomposition analysis (LMO-EDA) as implemented in GAMESS program. All values are provided in kcal/mol.

		2– η_{H-X}^{5}	2– η_{R-X}^{6}	2– η_{H-V}^5	2– η_{R-V}^{6}
	Electrostatic	-16.08	-18.9	-17.13	-19.54
	Exchange	-2.94	-3.43	-2.65	-3.46
I ;+	Repulsion	14.85	15.51	15.26	17.21
LI	Polarization	-37.18	-35.72	-32.54	-33.66
	Dispersion	-5.22	-5.99	-10.53	-8.92
	IE	-46.57	-48.53	-47.59	-48.37
	Electrostatic	-17.32	-18.7	-18.33	
	Exchange	-2.55	-2.5	-1.68	
Na+	Repulsion	13.2	13.6	12.4	
INA	Polarization	-20.6	-19.74	-16.59	а
	Dispersion	-6.92	-7.21	-11.63	
	IE	-34.2	-34.55	-35.83	
	Electrostatic	-16.68	-17.14	-18.67	
	Exchange	-3.34	-3.66	-2.95	
K+	Repulsion	16.62	17.82	19.82	
N	Polarization	-14.46	-14.45	-13.9	а
	Dispersion	-8.76	-9.15	-16.16	
	IE	-26.63	-26.57	-31.86	
	Electrostatic	-50.14	-57.35		-60.63
	Exchange	-29.25	-33.65	b	-34.21
Cu+	Repulsion	94.37	109.15		114.19
Cu	Polarization	-47.18	-49.54		-44.79
	Dispersion	-25.45	-28.45		-30.06
	IE	-57.65	-59.83		-55.5

a) Stationary point not obtained.

b) Convergence failure

Table S6: The M05-2X/cc-pVDZ optimized coordinates of the sumanene (1) and corannulene (2) dimers.

SUMANENE (1)

6	0.000000	3.291688	0.186461
6	2.850685	-1.645844	0.186461
6	-2.850685	-1.645844	0.186461
1	0.000000	4.152786	-0.496742
1	0.000000	3.679724	1.211857
1	3.596418	-2.076393	-0.496742
1	3.186734	-1.839862	1.211857
1	-3.596418	-2.076393	-0.496742
1	-3.186734	-1.839862	1.211857
6	0.717506	1.212322	-0.696722
6	1.408655	0.015218	-0.696722
6	-1.408655	0.015218	-0.696722
6	-0.717506	1.212322	-0.696722
6	-0.691148	-1.227540	-0.696722
6	0.691148	-1.227540	-0.696722
6	1.208103	2.357832	-0.067368
6	2.645994	-0.132668	-0.067368
6	-2.645994	-0.132668	-0.067368
6	-1.208103	2.357832	-0.067368
6	-1.437891	-2.225164	-0.067368
6	1.437891	-2.225164	-0.067368
6	2.503357	2.269212	0.447688
6	3.216873	1.033364	0.447688
6	-3.216873	1.033364	0.447688
6	-2.503357	2.269212	0.447688
6	-0.713517	-3.302576	0.447688
6	0.713517	-3.302576	0.447688
1	2.949419	3.108211	0.981469
1	4.166499	1.000166	0.981469
1	-4.166499	1.000166	0.981469
1	-2.949419	3.108211	0.981469
1	-1.217080	-4.108377	0.981469
1	1.217080	-4.108377	0.981469
COF	RANNULENE	(2)	
6	0.000000	1.206004	0.625048
6	-1.146978	0.372676	0.625048
6	-0.708871	-0.975678	0.625048
6	0.708871	-0.975678	0.625048
6	1.146978	0.372676	0.625048
6	0.000000	2.479242	0.096638
6	-2.357899	0.766128	0.096638
6	-1.457262	-2.005749	0.096638
6	1.457262	-2.005749	0.096638
6	2.357899	0.766128	0.096638
6	-1.310212	2.980282	-0.257114

6	-2.429539	2.167043	-0.257114
6	-3.239294	-0.325128	-0.257114
6	-2.811749	-1.640975	-0.257114
6	-0.691782	-3.181222	-0.257114
6	0.691782	-3.181222	-0.257114
6	2.811749	-1.640975	-0.257114
6	3.239294	-0.325128	-0.257114
6	2.429539	2.167043	-0.257114
6	1.310212	2.980282	-0.257114
1	-1.411647	4.002030	-0.622375
1	-3.369933	2.579252	-0.622375
1	-4.242379	-0.105861	-0.622375
1	-3.494381	-2.407964	-0.622375
1	-1.210287	-4.067455	-0.622375
1	1.210287	-4.067455	-0.622375
1	3.494381	-2.407964	-0.622375
1	4.242379	-0.105861	-0.622375
1	3.369933	2.579252	-0.622375
1	1.411647	4.002030	-0.622375
1-1	n_{u}^{6}		
6	0 720655	1 216483	0 629784
6	0.693178	-1 222347	0.629784
6	1 413833	0.015863	0.629784
6	-0.693178	-1 232347	0.629784
6	-0 720655	1 216483	0.629784
6	-1 413833	0.015863	0.629784
6	1 210770	2 372672	0.014094
6	1 449409	-2 234894	0.014094
6	2 660179	-0 137778	0.014094
6	-1 449409	-2 234894	0.014094
6	-1 210770	2 372672	0.014094
6	-2 660179	-0.137778	0.014094
6	0.000000	3.304927	-0.235619
6	2.862151	-1.652464	-0.235619
6	-2.862151	-1.652464	-0.235619
6	-3.221365	1.033178	-0.495356
6	2.505441	2.273195	-0.495356
6	-0.715924	-3.306373	-0.495356
6	2 5 0 5 4 4 1	2 273195	-0.495356
6	=2)().)441		
6	3.221365	1.033178	-0.495356
6 6	3.221365 0.715924	1.033178 -3.306373	-0.495356 -0.495356
6 6 1	-2.303441 3.221365 0.715924 -4.169829	1.033178 -3.306373 1.006787	-0.495356 -0.495356 -1.030394
6 6 1 1	-2.303441 3.221365 0.715924 -4.169829 2.956818	1.033178 -3.306373 1.006787 3.107784	-0.495356 -0.495356 -1.030394 -1.030394
6 6 1 1 1	-2.303441 3.221365 0.715924 -4.169829 2.956818 -1.213011	1.033178 -3.306373 1.006787 3.107784 -4.114571	-0.495356 -0.495356 -1.030394 -1.030394 -1.030394
6 6 1 1 1 1	-2.303441 3.221365 0.715924 -4.169829 2.956818 -1.213011 -2.956818	1.033178 -3.306373 1.006787 3.107784 -4.114571 3.107784	-0.495356 -0.495356 -1.030394 -1.030394 -1.030394 -1.030394

1	1.213011	-4.114571	-1.030394
1	0.000000	3.692122	-1.260839
1	3.197472	-1.846061	-1.260839
1	-3.197472	-1.846061	-1.260839
1	0.000000	4.169224	0.443038
1	3.610654	-2.084612	0.443038
1	-3.610654	-2.084612	0.443038
3	0.000000	0.000000	2.510037
1-3	n^6		
6	7_{R-X}	0 071271	1 421207
6	-0.071399	1 262167	0.717258
6	0.090724	-1.202107	0.717250
6	0.090724	-1.202107	0.717330
6	-0.671399	1 160223	0.605367
6	-0.004790	1.100223	0.093307
6	-0.004790	1.100223	2652262
6	0.002304	2 4 2 2 0 2 4	2.033303
6	-0.090347	-2.422934	-1.203400 1 20E406
6	-0.090347	-2.422934	1.203400
6	-0.032304	2 156208	-2.033303
6	0.040450	2.150390	1.447531
6	0.040430	1 560590	2 861200
6	0.200033	2 262800	2.001300
6	0.131903	1 560580	-2 861300
6	0.200033	2 240021	0 710092
6	0.304209	1 11/690	2 2 2 2 2 2 2 4 0
6	0.451294	-1.114009	-3 223349
6	0.451294	2 240021	0 710083
6	0.304209	-2 345566	2 504979
6	0.414011	-2.345566	-2 504979
1	1 092244	4 050075	-2.304979
1	0.984016	-1 100950	4 173032
1	0.984016	-1.100950	-4 173032
1	1 092244	4 050075	1 221408
1	0.920361	-3 199928	2 952741
1	0.920301	-3 199928	-2 952741
1	1 300421	1 738641	3 188026
1	1 146088	-3 778135	0.000000
1	1 300421	1 738641	-3 188026
1	-0 394046	2 028949	3 608308
1	-0 572493	-4 206323	0.000000
1	-0 394046	2 028949	-3 608308
3	-1 593642	3 140276	0.000000
5	1.575012	5.110270	0.000000
1-7	n_{p}^{5}		
6	0 599124	-1 170485	0 722250
6	0.690247	1 272138	0.691829
6	0.645713	0 031904	1 408861
6	0.690247	1.272138	-0.691829
		-	

6	0.599124	-1.170485	-0.722250
6	0.645713	0.031904	-1.408861
6	-0.047593	-2.308465	1.221988
6	0.088517	2.281528	1.441089
6	0.031685	0.192894	2.648950
6	0.088517	2.281528	-1.441089
6	-0.047593	-2.308465	-1.221988
6	0.031685	0.192894	-2.648950
6	-0.392308	-3.213997	0.000000
6	-0.183983	1.709787	2.852218
6	-0.183983	1.709787	-2.852218
6	-0.488360	-0.969149	-3 235584
6	-0 529418	-2 207671	2 535558
6	-0 394772	3 373980	-0 712335
6	-0 529418	-2 207671	-2 535558
6	-0.488360	-0.969149	3 235584
6	-0 394772	3 373980	0 712335
1	-0.996211	-0.924176	-4 198374
1	-0.770211	-3.033318	2 999761
1	-0.902572	4 196817	-1 213738
1	-0.902372	-3 033318	-1.213750
1	-1.007047	-0.024176	-2.999701 1 108371
1	-0.990211	4 196817	1 21 27 28
1	-1.463102	-3 110017	0.000000
1	-1.403102	1 025200	3 187256
1 1	-1.203171 1 205171	1.925399	2 1 9 7 2 5 6
1	-1.203171	1.923399	-3.107230
1	0.112013	-4.190372 2 110099	2 602972
1	0.504095	2.119900	3.003073 2602072
1	2 024693	2.119900	-3.003073
3	2.034343	-2.703030	0.000000
1-	$\eta^{_{H-V}}_{_{H-V}}$		
6	-0.722135	1.218327	-0.738308
6	-0.694034	-1.234551	-0.738308
6	-1.416170	0.016224	-0.738308
6	0.694034	-1.234551	-0.738308
6	0.722135	1.218327	-0.738308
6	1.416170	0.016224	-0.738308
6	-1.205126	2.361475	-0.083146
6	-1.442534	-2.224407	-0.083146
6	-2.647660	-0.137068	-0.083146
6	1.442534	-2.224407	-0.083146
6	1.205126	2.361475	-0.083146
6	2.647660	-0.137068	-0.083146
6	0.000000	3.305813	0.137577
6	-2.862918	-1.652907	0.137577
6	2.862918	-1.652907	0.137577
6	3.206432	1.025476	0.452970
6	-2.491304	2.264114	0.452970
6	0.715128	-3.289590	0.452970

6	2.491304	2.264114	0.452970
6	-3.206432	1.025476	0.452970
6	-0.715128	-3.289590	0.452970
1	4.151370	0.990669	0.993881
1	-2.933630	3.099858	0.993881
1	1.217741	-4.090527	0.993881
1	2.933630	3.099858	0.993881
1	-4.151370	0.990669	0.993881
1	-1.217741	-4.090527	0.993881
1	0.000000	3.761069	1.134211
1	-3 257181	-1 880534	1 134211
1	3 257181	-1 880534	1 134211
1	0.000000	4 122851	-0 597943
1	-3 570494	-2.061426	-0 597943
1	3 570494	-2.061426	-0 597943
3	0.000000	0.000000	1 072315
5	0.000000	0.000000	1.072313
1_	n^6		
-	$^{\prime}I_{R-V}$	0 057242	1 417651
6	-0.730288	-0.05/342	1.41/051
0	-0.706464	-1.249930	-0.717311
6	-0.700484	-1.249930	0.717311
6	-0.730288	-0.05/342	-1.41/651
6	-0./34623	1.1850//	0.694/19
6	-0./34623	1.1850//	-0.694/19
6	-0.104395	0.103979	2.656//2
6	-0.060765	-2.387381	-1.206198
6	-0.060765	-2.38/381	1.206198
6	-0.104395	0.103979	-2.656772
6	-0.110145	2.195467	1.450169
6	-0.110145	2.195467	-1.450169
6	0.097365	1.623817	2.876333
6	0.192583	-3.322095	0.000000
6	0.097365	1.623817	-2.876333
6	0.414316	3.275698	-0.720448
6	0.430981	-1.055411	3.224342
6	0.430981	-1.055411	-3.224342
6	0.414316	3.275698	0.720448
6	0.448887	-2.288949	2.504305
6	0.448887	-2.288949	-2.504305
1	0.933808	4.091242	-1.222542
1	0.951681	-1.021893	4.180472
1	0.951681	-1.021893	-4.180472
1	0.933808	4.091242	1.222542
1	0.986140	-3.122507	2.955414
1	0.986140	-3.122507	-2.955414
1	1.081377	1.870090	3.291391
1	1.211180	-3.726162	0.000000
1	1.081377	1.870090	-3.291391
1	-0.657532	2.032871	3.562972
1	-0.500438	-4.175099	0.000000

1	-0.657532	2.032871	-3.562972
3	1.401540	1.331311	0.000000
2-	$-\eta_{H-X}^5$		
6	0 000000	1 208834	0 565163
6	-1.149670	0.373550	0.565163
6	-0 710535	-0.977968	0 565163
6	0 710535	-0.977968	0 565163
6	1 149670	0 373550	0.565163
6	0.000000	2.490317	0.039540
6	-2 368432	0 769550	0.039540
6	-1 463771	-2 014709	0.039540
6	1 463771	-2 014709	0.039540
6	2 368432	0 769550	0.039540
6	-1 309505	2 983264	-0 313548
6	-2 432594	2.167293	-0 313548
6	-3 241912	-0 323534	-0 313548
6	-2 812931	-1 643804	-0 313548
6	-0 694107	-3 183220	-0 313548
6	0.694107	-3 183220	-0 313548
6	2 812931	-1 643804	-0 313548
6	2.012731	-0.323534	-0.313540
6	2 422594	2 167293	-0.313548
6	1 309505	2.107255	-0.313540
1	-1 413674	4 000891	-0.515540
1	-3 368224	2 580827	-0.687742
1	-4.241923	-0.108141	-0.687742
1	-3.495351	-2.405852	-0.687742
1	-1 207078	-4.067726	-0.687742
1	1 207978	-4.067726	-0.687742
1	2 / 05 25 1	-7.007720	-0.687742
1	A 241022	-2.403032	-0.687742
1	3 368224	2 580827	-0.687742
1	1 1 1 2 6 7 1	<i>L</i> .300027	-0.687742
3	0.000000	0.000000	2 516391
5	0.000000	0.000000	2.510571
2-	$-n^6$		
6	(I_{R-X})	0 424526	1 1 1 7 6 6 7
0	0.000972	0.424520	1.14/00/
0	0.551205	-0.921525	0.712455 0.712452
6	0.531203	-0.921523	-0./12453
6	0.600972	0.424526	-1.14/66/
0	0.029352	1.25150/	0.000000
0	0.078552	0.02/545	2.330139
0		-1.940053	1.4/12/3
6	-0.015841	-1.946653	-1.4/12/3
6	0.078552	0.82/545	-2.358139
6	0.12/395	2.536968	0.000000
6	-0.296248	-0.256326	3.244/92
6	-0.3343/4	-1.5/6285	2.034464

-0.390402 -3.116809 0.699729

6

6	-0.390402	-3.116809	-0.699729
6	-0.334374	-1.576285	-2.834464
6	-0.296248	-0.256326	-3.244792
6	-0.237874	2.235108	-2.432241
6	-0.214875	3.045879	-1.309484
6	-0.214875	3.045879	1.309484
6	-0.237874	2.235108	2.432241
1	-0.646435	-0.022994	4.249900
1	-0.706327	-2.330348	3.526109
1	-0.773033	-4.000378	1.210357
1	-0.773033	-4.000378	-1.210357
1	-0.706327	-2.330348	-3.526109
1	-0.646435	-0.022994	-4.249900
1	-0.594038	2.657335	-3.370839
1	-0.556240	4.075452	-1.410074
1	-0.556240	4.075452	1.410074
1	-0.594038	2.657335	3.370839
3	1.786101	-2.691511	0.000000
2-2	η_{H-V}^5		
6	0.000000	1.210850	-0.675296
6	1.151587	0.374173	-0.675296
6	0.711720	-0.979598	-0.675296
6	-0.711720	-0.979598	-0.675296
6	-1.151587	0.374173	-0.675296
6	0.000000	2.482205	-0.122006
6	2.360718	0.767044	-0.122006
6	1.459004	-2.008146	-0.122006
6	-1.459004	-2.008146	-0.122006
6	-2.360718	0.767044	-0.122006
6	1.309955	2.981928	0.236124
6	2.431183	2.167308	0.236124
6	3.240780	-0.324375	0.236124
6	2.812509	-1.642458	0.236124
6	0.692957	-3.182402	0.236124
6	-0.692957	-3.182402	0.236124
6	-2.812509	-1.642458	0.236124
6	-3.240780	-0.324375	0.236124
6	-2.431183	2.167308	0.236124
6	-1.309955	2.981928	0.236124
1	1.410878	4.002603	0.602983
1	3.370716	2.578697	0.602983

1	4.242687	-0.104953	0.602983
1	3.494095	-2.408880	0.602983
1	1.211246	-4.067467	0.602983
1	-1.211246	-4.067467	0.602983
1	-3.494095	-2.408880	0.602983
1	-4.242687	-0.104953	0.602983
1	-3.370716	2.578697	0.602983
1	-1.410878	4.002603	0.602983
3	0.000000	0.000000	1.240603
2-7	$\eta^6_{\scriptscriptstyle R-V}$		
6	0.653040	0.416066	1.147741
6	0.666967	-0.935830	0.712153
6	0.666967	-0.935830	-0.712153
6	0.653040	0.416066	-1.147741
6	0.647166	1.246188	0.000000
6	0.116179	0.801483	2.359070
6	0.157536	-1.980183	1.470720
6	0.157536	-1.980183	-1.470720
6	0.116179	0.801483	-2.359070
6	0.097610	2.511940	0.000000
6	-0.217658	-0.295401	3.245598
6	-0.202830	-1.615721	2.829469
6	-0.187932	-3.161542	0.698455
6	-0.187932	-3.161542	-0.698455
6	-0.202830	-1.615721	-2.829469
6	-0.217658	-0.295401	-3.245598
6	-0.250521	2.198319	-2.433141
6	-0.258920	3.009837	-1.310782
6	-0.258920	3.009837	1.310782
6	-0.250521	2.198319	2.433141
1	-0.571676	-0.078929	4.253165
1	-0.535375	-2.387458	3.522553
1	-0.538006	-4.056757	1.212340
1	-0.538006	-4.056757	-1.212340
1	-0.535375	-2.387458	-3.522553
1	-0.571676	-0.078929	-4.253165
1	-0.611065	2.609796	-3.374956
1	-0.628691	4.029314	-1.413694
1	-0.628691	4.029314	1.413694
1	-0.611065	2.609796	3.374956
3	-1.469789	-1.341679	0.000000

Table S7: The M05-2X/cc-pVDZ optimized coordinates of the Cu⁺ complexes of sumanene (1) and corannulene (2).

1-	$\eta^{_{6}}_{\scriptscriptstyle H-X}$		
6	-0.714782	-1.222583	0.224746
6	-0.701256	1.229631	0.224270
6	-1.416111	-0.023885	0.224731
6	0.687499	1.237373	0.224258
6	0.728371	-1.214539	0.224746
6	1.416292	-0.008096	0.224733
6	-1.198582	-2.383235	-0.388150
6	-1.464488	2.229394	-0.388182
6	-2.665153	0.123807	-0.388064
6	1.439524	2.245593	-0.388200
6	1.225088	-2.369722	-0.388156
6	2.663605	0.153531	-0.388066
6	0.018454	-3.309390	-0.634082
6	-2.875313	1.638663	-0.633788
6	2.856842	1.670635	-0.633809
6	3.228625	-1.014679	-0.897518
6	-2.492997	-2.288370	-0.897327
6	0.698474	3.310706	-0.897651
6	2.518375	-2.260420	-0.897312
6	-3.217099	-1.050630	-0.897538
6	-0.735376	3.302709	-0.897639
1	4.175607	-0.984356	-1.435005
1	-2.940565	-3.123917	-1.434275
1	1.189400	4.121379	-1.43463/
1	2.9/5249	-3.090922	-1.434244
1	-4.164348	-1.0308/6	-1.435045
1	-1.235313	4.10/864	
1	0.020652	-3./03422	-1.050541
1	-3.218144	1.833823	-1.0501/1
1	3.19/400	1.809593	-1.050198
1	0.023230	-4.109295	0.050255
1	-3.021033	2.004303	0.051092
1 20	5.596571	2.104704	0.031001
29	0.000002	0.000734	2.1/5520
1-	$\eta^{_{R-X}}$		
6	0.505006	0.500901	1.422398
6	0.709268	1.673854	-0.717532
6	0.709268	1.673854	0.717532
6	0.505006	0.500901	-1.422398
6	0.253255	-0.706240	0.697356
6	0.253255	-0.706240	-0.697356
6	-0.149413	0.463359	2.653664
6	0.293674	2.912099	-1.205311
6	0.293674	2.912099	1.205311
6	-0.149413	0.463359	-2.653664

6	-0.540525	-1.593106	1.452706
6	-0.540525	-1.593106	-1.452706
6	-0.675432	-0.976356	2.864512
6	0.206734	3.875691	0.000000
6	-0.675432	-0.976356	-2.864512
6	-1.235622	-2.582614	-0.723399
6	-0.449289	1.703692	3.222868
6	-0.449289	1.703692	-3.222868
6	-1.235622	-2.582614	0.723399
6	-0.225478	2.914143	2.504388
6	-0.225478	2.914143	-2.504388
1	-1.888286	-3.295343	-1.225111
1	-0.978567	1.771055	4.172249
1	-0.978567	1.771055	-4.172249
1	-1.888286	-3.295343	1.225111
1	-0.597404	3.835692	2.950805
1	-0.597404	3.835692	-2.950805
1	-1.721450	-0.986036	3.191054
1	-0.734670	4.436785	0.000000
1	-1.721450	-0.986036	-3.191054
1	-0.090291	-1.530835	3.610990
1	1.028752	4.604979	0.000000
1	-0.090291	-1.530835	-3.610990
29	0.937662	-2.882819	0.000000
	-		
$1-\eta$	S R - X		
6	0.017907	-0.986715	0.730923
6	0.552600	1.405887	0.692713
6	0.278589	0.197156	1.413328
6	0.552600	1.405887	-0.692713
6	0.017907	-0.986715	-0.730923
6	0.278589	0.197156	-1.413328
6	-0.861959	-1.972074	1.214538
6	0.152857	2.513082	1.441782
6	-0.304650	0.477991	2.652184
6	0.152857	2.513082	-1.441782
6	-0.861959	-1.972074	-1.214538
6	-0.304650	0.477991	-2.652184
6	-1.328054	-2.814267	0.000000
6	-0.223347	2.008299	2.853720
6	-0.223347	2.008299	-2.853720
6	-1.066630	-0.548157	-3.212742
6	-1.346889	-1.759357	2.502927
6	-0.112245	3.676277	-0.712770
6	-1.346889	-1.759357	-2.502927
6	-1.066630	-0.548157	3.212742
6	-0.112245	3.676277	0.712770

1	-1.587816	-0.395374	-4.157262
1	-2.065782	-2.446165	2.947607
1	-0.455354	4.580501	-1.214072
1	-2.065782	-2.446165	-2.947607
1	-1.587816	-0.395374	4.157262
1	-0.455354	4.580501	1.214072
1	-2.418971	-2.922947	0.000000
1	-1.184035	2.418110	3.185419
1	-1.184035	2.418110	-3.185419
1	-0.906247	-3.829679	0.000000
1	0.531005	2.282345	3.604580
1	0.531005	2.282345	-3.604580
29	1.923542	-1.703078	0.000000

1- η_{H-V}^6

6	0.099459	-1.415040	-0.926522
6	1.177045	0.794179	-0.925368
6	1.261169	-0.651258	-0.925772
6	-0.065184	1.418371	-0.925811
6	-1.194588	-0.764985	-0.926317
6	-1.275143	0.622989	-0.925811
6	0.017928	-2.656780	-0.281343
6	2.293349	1.344596	-0.280214
6	2.433726	-1.069007	-0.280711
6	-0.289802	2.642317	-0.280335
6	-2.142645	-1.571764	-0.281457
6	-2.310141	1.314496	-0.280657
6	-1.485411	-2.956779	-0.059801
6	3.304501	0.192440	-0.058123
6	-1.817612	2.766069	-0.058079
6	-3.338766	0.522636	0.242701
6	1.217427	-3.151455	0.243152
6	0.844448	3.272332	0.244190
6	-3.255769	-0.904416	0.242392
6	2.412061	-2.366460	0.243556
6	2.121680	2.630763	0.244140
1	-4.175512	0.976216	0.772675
1	1.242249	-4.103004	0.772762
1	0.758926	4.219982	0.774387
1	-4.034266	-1.452156	0.772042
1	3.275263	-2.766222	0.774310
1	2.932928	3.127565	0.774834
1	-1.689551	-3.363094	0.936950
1	3.758263	0.218684	0.938793
1	-2.066994	3.145199	0.939149
1	-1.852614	-3.688314	-0.793993
1	4.121818	0.240281	-0.791866
1	-2.267355	3.450741	-0.791422
29	-0.001709	-0.002943	1.057190

1-1	\mathcal{I}_{R-V}^{6}		
6	0.953806	0.415519	1.419646
6	0.797735	1.596230	-0.716946
6	0.797735	1.596230	0.716946
6	0.953806	0.415519	-1.419646
6	1.069626	-0.816584	0.694811
6	1.069626	-0.816584	-0.694811
6	0.361847	0.188127	2.664577
6	0.030687	2.655272	-1.206619
6	0.030687	2.655272	1.206619
6	0.361847	0.188127	-2.664577
6	0.574984	-1.892712	1.457415
6	0.574984	-1.892712	-1.457415
6	0.332956	-1.344901	2.888906
6	-0.329064	3.554018	0.000000
6	0.332956	-1.344901	-2.888906
6	0.204923	-3.045382	-0.727588
6	-0.298201	1.280914	3.231037
6	-0.298201	1.280914	-3.231037
6	0.204923	-3.045382	0.727588
6	-0.460407	2.501953	2.506358
6	-0.460407	2.501953	-2.506358
1	-0.165704	-3.938387	-1.229676
1	-0.806767	1.193113	4.190296
1	-0.806767	1.193113	-4.190296
1	-0.165704	-3.938387	1.229676
1	-1.087921	3.269916	2.957444
1	-1.087921	3.269916	-2.957444
1	-0.607807	-1.698186	3.325170
1	-1.388189	3.835357	0.000000
1	-0.607807	-1.698186	-3.325170
1	1.145526	-1.665016	3.556891
1	0.259419	4.482107	0.000000
1	1.145526	-1.665016	-3.556891
29	-1.264378	-1.462955	0.000000

2-1	\mathcal{I}_{H-X}^5		
6	-0.001936	-1.211480	0.135947
6	1.152173	-0.375658	0.137436
6	0.713626	0.979986	0.138253
6	-0.710493	0.982264	0.138254
6	-1.153364	-0.371971	0.137448
6	-0.003989	-2.492714	-0.390085
6	2.370880	-0.772895	-0.387080
6	1.468973	2.016563	-0.384813
6	-1.462523	2.021248	-0.384815
6	-2.373336	-0.765314	-0.387065
6	1.306027	-2.985562	-0.741390
6	2.430846	-2.171008	-0.739802
6	3.244978	0.320801	-0.736392

6	2.817662	1.642120	-0.735437
6	0.699442	3.185786	-0.735547
6	-0.689261	3.188007	-0.735552
6	-2.812406	1.651115	-0.735432
6	-3.243939	0.331166	-0.736384
6	-2.437779	-2.163223	-0.739792
6	-1.315573	-2.981371	-0.741384
1	1 410328	-4 003173	-1 115510
1	3 366020	-2 586986	-1 112577
1	4 245783	0.105618	-1 108920
1	2 502016	2 402021	1 107146
1	1 212050	2.402921 1 070021	1 107774
1	1.213939	4.070921	-1.10///4
1	-1.200941	4.0/4/82	-1.10//83
1	-3.495228	2.414103	-1.10/13/
1	-4.245423	0.119180	-1.108919
1	-3.374276	-2.576203	-1.112576
1	-1.423126	-3.998639	-1.115515
29	-0.000002	-0.006541	2.167092
2 - <i>n</i>	6		
- ·,	R-X	0.015022	1 1 4 7 5 0 2
6	0.4480/3	0.815032	1.14/502
6	0.152105	-0.499940	0.714918
6	0.152105	-0.499940	-0./14918
6	0.4486/3	0.815032	-1.14/502
6	0.616707	1.623586	0.000000
6	0.003979	1.302886	2.357831
6	-0.566423	-1.415702	1.477111
6	-0.566423	-1.415702	-1.477111
6	0.003979	1.302886	-2.357831
6	0.347312	2.977827	0.000000
6	-0.555204	0.302060	3.244497
6	-0.821467	-0.992885	2.836416
6	-1.125547	-2.516880	0.703385
6	-1.125547	-2.516880	-0.703385
6	-0.821467	-0.992885	-2.836416
6	-0.555204	0.302060	-3.244497
6	-0.063693	2.743798	-2.432074
6	0.100224	3.538613	-1.309436
6	0.100224	3.538613	1.309436
6	-0.063693	2.743798	2.432074
1	-0.861933	0.594491	4.248271
1	-1.318889	-1.670279	3.528525
1	-1 650026	-3 324275	1 212925
1	-1 650026	-3 324275	-1 212925
1	-1 318880	-1 670270	-3 528525
1	-0.861022	0 504.401	_A 748771
1	-0 341674	2 221206	-3 370567
1	-0.0545024	1.611072	-1 110517
⊥ 1	-0.030300	T.011973	1 110542
⊥ 1	-0.030300	2 221204	2 270567
T	-0.541024	J.441370	2.270207

20	1 00((20	2 5 4 4 7 0 0	0 000000
29	1.090030	-2.544/00	0.000000

2-	$\cdot \eta_{\scriptscriptstyle H-V}^{\scriptscriptstyle 5}$		
6	-0.712719	0.981837	-0.881477
6	0.712712	0.981842	-0.881477
6	1.153700	-0.374312	-0.882041
6	0.000004	-1.212679	-0.882649
6	-1.153697	-0.374320	-0.882041
6	-1 465361	2 017605	-0 351470
6	1 465347	2.017615	-0351470
6	2 271251	0.760617	0.252145
6	2.371231	-0.709017	-0.332143
6	0.000009	-2.492310	0.252145
6	-2.3/1240	-0.769633	-0.352145
6	-0.693556	3.195059	-0.008/81
6	0.693534	3.195064	-0.008/81
6	2.824528	1.647716	-0.011357
6	3.253291	0.328625	-0.011680
6	2.439222	-2.176570	-0.011104
6	1.317051	-2.991914	-0.010737
6	-1.317031	-2.991923	-0.010737
6	-2.439207	-2.176587	-0.011104
6	-3.253294	0.328602	-0.011680
6	-2.824539	1.647697	-0.011357
1	-1.209149	4.088913	0.340443
1	1.209121	4.088922	0.340443
1	3.515697	2.414309	0.336838
1	4.263226	0.114687	0.336060
1	3.381908	-2.596779	0.337326
1	1.425599	-4.018038	0.338128
1	-1.425572	-4.018048	0.338128
1	-3.381890	-2.596802	0.337326
1	-4.263227	0.114658	0.336060
1	-3.515713	2.414285	0.336838
29	0.000000	-0.002609	1.182026
2-	$\cdot \eta_{\scriptscriptstyle R-V}^{\scriptscriptstyle 6}$		
6	0.828579	0.805335	1.147534
6	0.992410	-0.532489	0.712633
6	0.992410	-0.532489	-0.712633
6	0.828579	0.805335	-1.147534
6	0.723926	1.627202	0.000000
6	0.264005	1.125767	2.364250
6	0.638730	-1.633816	1.479404
6	0.638730	-1.633816	-1.479404
6	0.264005	1.125767	-2.364250
6	0.031399	2.819266	0.000000
6	0.079546	-0.001977	3.255568
6	0.254679	-1.313081	2.843896
6	0.476848	-2.863971	0.704619
6	0.476848	-2.863971	-0.704619

6	0.254679	-1.313081	-2.843896
6	0.079546	-0.001977	-3.255568
6	-0.266520	2.469243	-2.437418
6	-0.378547	3.270681	-1.313014
6	-0.378547	3.270681	1.313014
6	-0.266520	2.469243	2.437418
1	-0.284368	0.171132	4.267907
1	0.036209	-2.116916	3.545605
1	0.301525	-3.809835	1.216672

1	0.301525	-3.809835	-1.216672
1	0.036209	-2.116916	-3.545605
1	-0.284368	0.171132	-4.267907
1	-0.667805	2.838727	-3.380107
1	-0.866478	4.239170	-1.417456
1	-0.866478	4.239170	1.417456
1	-0.667805	2.838727	3.380107
29	-1.249892	-1.559713	0.000000

Table S8: The geometrical parameters (in Å) of the bucky bowl complexes of sumanene (1) and corannulene (2) with Li^+ ion evaluated at the B3LYP (in plain) and B3LYP-D (in italics) level in conjugation with the cc-pVDZ basis set.

	r1	r2	r3	r4	r5	r6	cation-p
1 - η_{H-X}^{6}	1.394	1.404	1.400	1.437	1.442	1.554	1.882
	1.395	1.404	1.400	1.437	1.442	1.553	1.890
$1-\eta_{R-X}^6$	1.399	1.411	1.412	1.447	1.432	1.553	1.865
	1.399	1.411	1.411	1.447	1.431	1.551	1.885
1 - η_{R-X}^{5}	1.393	1.408	1.407	1.429	1.445	1.566	1.984
	1.393	1.408	1.406	1.430	1.444	1.565	1.973
$1-\eta_{H-V}^6$	1.395	1.408	1.403	1.436	1.444	1.553	1.815
	1.397	1.409	1.400	1.434	1.447	1.548	1.844
1 - η_{R-V}^{6}	1.396	1.411	1.412	1.448	1.436	1.558	1.787
- 10 y	1.399	1.415	1.407	1.445	1.440	1.551	1.847

	r1	r2	r3	r4	cation-p
$2 - \eta_{H_{V}}^{5}$	1.424	1.394	1.446	1.396	1.951
— <i>1П</i> -X	1.424	1.395	1.445	1.396	1.992
$2_{-}n_{p}^{6}$	1.429	1.397	1.454	1.407	1.883
$\mathbf{Z} = \mathbf{\eta}_{R-X}$	1.428	1.398	1.454	1.408	1.896
$2 - n_{u}^{5}$	1.425	1.395	1.451	1.395	1.917
	1.427	1.397	1.448	1.392	1.955
$2 - n_p^6 u$	1.426	1.395	1.456	1.406	1.818
	1.429	1.398	1.455	1.403	1.855

Li ⁺	$1 - \eta_{H-X}^{6}$	$1 - \eta_{R-X}^{6}$	$1 - \eta_{R-X}^5$	$1 - \eta_{H-V}^{6}$	$1 - \eta_{R-V}^{6}$	$2 - \eta_{H-X}^5$	$2 - \eta_{R-X}^{6}$	$2 - \eta_{H-X}^5$	$2 - \eta_{R-V}^{6}$
Electrostatic:	-6.76	-14.11	-7.30	-6.94	-11.78	-10.76	-10.79	-6.23	-9.18
Pauli Repulsion:	8.68	11.03	9.73	10.76	13.36	10.18	10.37	10.44	11.53
Orbital Interaction:	-44.10	-44.90	-41.84	-43.37	-44.40	-44.27	-44.28	-42.77	-43.19
Dispersion Energy:	-13.12	-12.39	-10.82	-18.64	-15.27	-10.98	-12.44	-16.39	-15.12
Total Bonding	-55.30	-60.37	-50.22	-58.19	-58.09	-55.82	-57.14	-54.95	-55.96
Cu ⁺									
Electrostatic:	-39.76	-55.30	-46.86	-39.81	-56.63	-45.10	-49.94	-38.49	-51.56
Pauli Repulsion:	51.70	63.40	53.44	54.86	67.34	53.20	60.12	53.80	63.28
Orbital Interaction:	-68.86	-73.91	-71.34	-59.41	-68.16	-69.31	-72.89	-59.13	-67.39
Dispersion Energy:	-5.17	-4.22	-7.25	-12.33	-8.86	-5.36	-4.44	-11.33	-7.85
Total Bonding	-62.09	-70.03	-72.01	-56.70	-66.32	-66.56	-67.15	-55.15	-63.52

Table S9: Summary of the factors contributing to the total bonding interaction in the Li^+ and Cu^+ complexes of sumanene (1) and corannulene (2). Calculations were carried out at BLYP-D/ATZP level using ADF program. All values are provided in kcal/mol.

In order to analyze the various factors which contribute to the total binding strength of the cationic complexes of bowls, the Morokuma–Ziegler decomposition scheme as implemented in the program ADF was carried out. In this energy decomposition analysis scheme, the interaction energy (ΔE_{int}) is expressed as the sum of the electrostatic interaction (ΔV_{elst}), Pauli repulsion (ΔE_{Pauli}) and orbital (ΔE_{oi}) interaction.

 $\Delta E_{int} = \Delta V_{elst} + \Delta E_{Pauli} + \Delta E_{oi}$

The calculations were carried out using the BLYP-D (BLYP augmented with an empirical dispersion term) functional. Hence, an empirical dispersion correction (ΔE_{disp}) with a S6 scaling factor of 1.20 (the default), evaluated by the scheme proposed by Grimme is also added to ΔE_{int} . The ATZVP basis set which is a valence-triple- ζ quality basis set with polarization functions and augmented with one additional diffuse function for each angular momentum is used in the EDA analysis.