Supporting Information

Gas-Phase Lanthanide Chloride Clusters: Relationships among ESI Abundances and DFT Structures and Energetics

Philip X Rutkowski,[†] Maria C. Michelini,^{‡,*} and John K. Gibson^{†,*}

[†]Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

USA

[‡]Dipartimento di Chimica, Università della Calabria, Via P. Bucci, Cubo 14 C, 87030 Arcavacata di Rende, Italy

Table of contents

Figures S1a-n. ESI mass spectra of 350 μ M LnCl₃ in isopropanol. LnCl_{3n+1}⁻ clusters are labeled. (Ln = La – Lu, with the exception of Pm).

Figure S2. ESI mass spectra of 140 µM LaCl₃ and 100 µM LuCl₃ in isopropanol.

Figure S3. ESI mass spectra of 350 μ M LaCl₃ and LuCl₃ in isopropanol with a chloride ion concentration of 10.35 mM.

Figure S4. Geometric structures of higher-energy isomers of $La_2Cl_7^-$ and $Lu_2Cl_7^-$.

Figure S5. Different views of La_6Cl_{19} showing different lanthanide coordination numbers.

Figure S6. Portion of ESI mass spectrum of a solution of 350 uM TmCl_3 in 1% $D_2O/99\%$ (CH₃)₂CH(OD) showing $\text{Tm}_3\text{Cl}_{10}$ and its hydration and hydrolysis products. For each species the three m/z peaks calculated as most intense are indicated by arrows.

Figure S7. Hydration and hydrolysis products of La₂Cl₇⁻ and La₃Cl₁₀⁻.

Figures S8a-f. ESI mass spectra of $LnBr_3$ in isopropanol. $LnBr_{3n+1}$ clusters are labeled. (Ln = La, Ce, Pr, Nd, Sm, Lu).

Figures S9a-b. ESI mass spectra of LnI_3 in isopropanol. LnI_{3n+1} clusters are labeled. (Ln = La, Lu).

Table S1. Atoms in Molecules (AIM) charges for $LaCl_3$ and La_nCl_{3n+1} (n =1- 6) clusters.

Table S2. Atoms in Molecules (AIM) charges for $LuCl_3$ and Lu_nCl_{3n+1} (n =1-6) clusters.

Table S3. Lanthanide bromide cluster abundances summed for all isotopic contributions.

Figure S1a. ESI mass spectra of 350 μ M LaCl₃ in isopropanol. La_nCl_{3n+1} clusters are labeled.

Figure S1b. ESI mass spectra of 350 μ M CeCl₃ in isopropanol. Ce_nCl_{3n+1} clusters are labeled.

Figure S1c. ESI mass spectra of 350 μ M PrCl₃ in isopropanol. Pr_nCl_{3n+1} clusters are labeled.

Figure S1d. ESI mass spectra of 350 μ M NdCl₃ in isopropanol. Nd_nCl_{3n+1} clusters are labeled.

Figure S1e. ESI mass spectra of 350 μ M SmCl₃ in isopropanol. Sm_nCl_{3n+1} clusters are labeled.

Figure S1f. ESI mass spectra of 350 μ M EuCl₃ in isopropanol. Eu_nCl_{3n+1} clusters are labeled.

Figure S1g. ESI mass spectra of 350 μ M GdCl₃ in isopropanol. Gd_nCl_{3n+1} clusters are labeled.

Figure S1h. ESI mass spectra of 350 μ M TbCl₃ in isopropanol. Tb_nCl_{3n+1} clusters are labeled.

Figure S1i. ESI mass spectra of 350 μ M DyCl₃ in isopropanol. Dy_nCl_{3n+1} clusters are labeled.

Figure S1j. ESI mass spectra of 350 μ M HoCl₃ in isopropanol. Ho_nCl_{3n+1} clusters are labeled.

Figure S1k. ESI mass spectra of 350 μ M ErCl₃ in isopropanol. Er_nCl_{3n+1} clusters are labeled.

Figure S11. ESI mass spectra of 350 μ M TmCl₃ in isopropanol. Tm_nCl_{3n+1} clusters are labeled.

Figure S1m. ESI mass spectra of 350 μ M YbCl₃ in isopropanol. Yb_nCl_{3n+1} clusters are labeled.

Figure S1n. ESI mass spectra of 350 μ M LuCl₃ in isopropanol. Lu_nCl_{3n+1} clusters are labeled.

Figure S2. ESI mass spectra of 140 μ M LaCl₃ (top) and 100 μ M LuCl₃ (bottom) in isopropanol. The signal-to-background ratio is inferior to that for the more concentrated 350 μ M solutions, but the same "magic number" compositions, La₄Cl₁₃ and Lu₅Cl₁₆, are clearly apparent.

Figure S3. ESI mass spectra of 350 μ M LaCl₃ (top) and LuCl₃ (bottom) in isopropanol, with the chloride concentration increased to 10.35 mM by addition of HCl, to a concentration of 10 mM. The "magic number" compositions, La₄Cl₁₃ and Lu₅Cl₁₆, remain clearly evident upon increasing the Cl⁻ concentration by ~30x, from 0.35 mM in the other studied solutions to 10.35 mM in these solutions. The peaks identified by asterisks which appear in both mass spectra are unidentified impurities which do not exhibit isotopic patterns corresponding to incorporation of ³⁵Cl/³⁷Cl. Peaks corresponding to addition of isopropanol, and to chloride substitution by hydroxide, are identified.

Figure S4. Geometric structures of higher-energy isomers of $La_2Cl_7^{-}$ and $Lu_2Cl_7^{-}$. Relative energies (RE) are calculated with respect to the ground-state structures.

Figure S5. Different views of La_6Cl_{19} showing different lanthanide coordination numbers.

Figure S6. Portion of ESI mass spectrum of a solution of 350 uM $TmCl_3$ in 1% D2O/99% (CH3)2CH(OD) showing Tm_3Cl_{10} and its hydration and hydrolysis products. For each species the three m/z peaks calculated as most intense are indicated by arrows.

Figure S7. Hydration and hydrolysis products of La₂Cl₇ and La₃Cl₁₀.

Figure S8a. ESI mass spectra of LaBr₃ in isopropanol. La_nBr_{3n+1} clusters are labeled.

Figure S8b. ESI mass spectra of CeBr₃ in isopropanol. Ce_nBr_{3n+1} clusters are labeled.

Figure S8c. ESI mass spectra of $PrBr_3$ in isopropanol. Pr_nBr_{3n+1} clusters are labeled.

Figure S8d. ESI mass spectra of NdBr₃ in isopropanol. Nd_nBr_{3n+1} clusters are labeled.

Figure S8e. ESI mass spectra of $SmBr_3$ in isopropanol. Sm_nBr_{3n+1} clusters are labeled.

Figure S8f. ESI mass spectra of $LuBr_3$ in isopropanol. Lu_nBr_{3n+1} clusters are labeled. Hydroxide-substituted clusters are indicated by daggers.

Figure S9a. ESI mass spectra of LaI_3 in isopropanol. La_nI_{3n+1} clusters are labeled.

Figure S9b. ESI mass spectra of LuI_3 in isopropanol. Lu_nI_{3n+1} clusters are labeled. Hydroxide-substituted clusters are indicated with daggers.

	La	Cl (terminal) ^a	Cl (bridge) ^a	Cl (center) ^a
LaCl ₃	1.963	-0.654	-	-
LaCl ₄	1.975	-0.744	-	-
La_2Cl_7	1.998	-0.716	-0.711	-
La_3Cl_{10}	1.994	-0.695	-0.700	-
La_4Cl_{13}	2.011	-0.688	-0.695	-0.730
La_5Cl_{16}	2.019	-0.672	-0.689	-0.759
La_6Cl_{19}	1.993	-0.664	-0.689	-0.761

Table S1. AIM Charges for $LaCl_3$ and La_nCl_{3n+1} (n =1- 6) clusters

^a Averaged values over all the corresponding Cl atoms.

Table S2.	AIM	Charges	for	LuCl ₃	and Lu	$l_n Cl_{3n+1}$	(n =	1-6)	clusters
-----------	-----	---------	-----	-------------------	--------	-----------------	------	------	----------

	Lu	Cl (terminal) ^a	Cl (bridge) ^a	Cl (center) ^a
LuCl ₃	2.009	-0.670	-	-
LuCl ₄ ⁻	1.979	-0.745	-	-
Lu_2Cl_7	2.013	-0.703	-0.754	-
Lu_3Cl_{10}	2.007	-0.697	-0.707	-
Lu_4Cl_{13}	2.042	-0.694	-0.707	-0.738
Lu_5Cl_{16}	2.012	-0.679	-0.689	-0.764
Lu_6Cl_{19}	2.010	-0.676	-0.686	-0.777

^a Averaged values over all the corresponding Cl atoms.

	2	3	4	5
La _n Br _{3n+1}	65%	59%	100%	45%
Ce _n Br _{3n+1}	65%	63%	100%	40%
Pr_nBr_{3n+1}	95%	85%	100%	50%
Nd_nBr_{3n+1}	87%	100%	98%	91%
Sm _n Br _{3n+1}	95%	100%	45%	53%
Lu _n Br _{3n+1}	100%	95%	80%	42%

Table S3. Lanthanide bromide cluster abundances normalized to the most abundant cluster for each lanthanide.^a

^a Cluster abundances correspond to the sum of peak intensities for all isotopomers which contribute to the isotopic distribution for a given cluster composition. Only Lu_2Br_7 and Lu_3Br_{10} hydrolyzed; the contributions from the OH-substituted clusters are included.