SUPPORTING INFORMATION

Structural controls on OH site availability and reactivity at iron oxyhydroxide particle surfaces

Xiaowei Song and Jean-François Boily*

Department of Chemistry Umeå University SE-901 87 Umeå Sweden

* corresponding author: +46 (0)90 786 5270, jean-francois.boily@chem.umu.se

Description of force field model and parameters

Potential energy was calculated as the sum of non-bonded (Coulombic and van der Waals) and bonded (bond stretch and bend) interactions. Coulombic energy is expressed as:

$$\mathbf{V}_{\mathrm{C}}(\mathbf{r}_{\mathrm{ij}}) = \frac{\mathbf{q}_{\mathrm{i}} \cdot \mathbf{q}_{\mathrm{i}}}{\mathbf{f} \cdot \mathbf{r}_{\mathrm{ij}}}$$
[1]

where $f=4\pi\epsilon_0\epsilon_p e^{-2}$, ϵ_0 is the permittivity of vacuum, ϵ_0 the relative dielectric constant and *e* elementary charge. Van der Waals energy is represented by the Lennard-Jones (12-6) function:

$$V_{LJ}(\mathbf{r}_{ij}) = 4\varepsilon_{ij}\left(\left(\frac{\boldsymbol{\sigma}_{ij}}{\mathbf{r}_{ij}}\right)^{12} - \left(\frac{\boldsymbol{\sigma}_{ij}}{\mathbf{r}_{ij}}\right)^{6}\right)$$
[2]

using Lorentz-Berthelot mixing rules:

$$\sigma_{ij} = \frac{1}{2} \left(\sigma_{ii} + \sigma_{jj} \right)$$
[3]

$$\varepsilon_{ij} = \sqrt{\varepsilon_{ii}\varepsilon_{jj}}$$
^[4]

Finally the bonded potential energies were described by harmonic stretches

$$V_{b}(r_{ij}) = \frac{1}{2} k_{ij}^{b} (r_{ij} - b_{ij})^{2}$$
[5]

for all hydroxyls (O-H), and harmonic bends

$$\mathbf{V}_{a}(\boldsymbol{\theta}_{ijk}) = \frac{1}{2} \mathbf{k}_{ijk}^{\boldsymbol{\theta}} \left(\boldsymbol{\theta}_{ijk} - \boldsymbol{\theta}_{ijk}\right)^{2}$$
[6]

in water (H-O-H) and bulk Fe-O-H. All modeling parameters re reported in Table 4.

References

- Cygan, R. T.; Liang, J. J.; Kalinichev, A. G. J. Phys. Chem. B 2004, 108 (4), 1255-1266.
- 2 Kerisit, S. Geochim. Cosmochim. Ac. 2011, 75 (8), 2043-2061.
- 3 Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. **1987**, *91* (24), 6269-6271.)
- 4 Berendsen, H. J. C.; Postma, J. P. M.; Gunsterenand, W. F.; Hermans, J., In *Intermolecular Forces*, Pullman, B., Ed. D. Riedel Publishing Company: Dordrecht, The Netherlands, 1981; pp 331-342.
- 5 H. Yang, R. Lu, R. T. Downs and G. Costin, Acta Crystallog. E, 2006, 62, i250-i252.
- 6 Wyckoff, R. W. G, *Crystal Structures 1*, Interscience Publishers: New York, 1963; pp 290-295.

TABLES

Table S1 Effects of protonation on surface OH stretching of LL

	Hads - (protons/nm ²)	Bands (cm^{-1})					
Spectra		• ^a	0	D	C	¢	
		3667	3625	3552	3534	3645	
Aa	-13.86	● [₿]	٠	٠	٠		
Ab	-2.59	\downarrow	-	-	-		
Ac	0.00	\downarrow	-	-	-		
Ad	2.29	\downarrow	-	-	-	•	
Ae	18.17	\perp	\downarrow	-	-	1	
Af	36.11		\downarrow	-	-	-	
Ag	53.15		\downarrow	-	-	-	
Ah	143.23		\downarrow	-	-	-	
Ai	312.99		\downarrow	-	-	-	

 α . Numbers in circles are the label numbers in Fig. 3-a.

β. Behavior of bands expressed as:

•: Present in (Aa) or appeared; [⊥]: Disappeared; -: Unchanged relative to previous spectrum ↑: Increased relative to previous spectrum; ↓: Decreased relative to previous spectrum

	Hads (protons/nm ²) –	Bands (cm^{-1})						
Spectra		• ^α	0	\mathbb{D}	C	•	٠	
		366	3626	3550	3534	3654	3646	
Ba	-7.85	● [₿]	•	•	•			
Bb	-4.59	\downarrow	-	-	-			
Bc	-0.48	\downarrow	-	-	-			
Bd	0.00	\downarrow	-	-	-			
Be	0.24	\downarrow	-	-	-			
Bf	2.23	\downarrow	-	-	-	•		
Bg	4.59	\downarrow	-	-	-	\downarrow		
Bh	9.10	\downarrow	-	-	-	\downarrow		
Bi	17.82	\downarrow	\downarrow	-	-	\downarrow		
Bj	26.08	\downarrow	\downarrow	-	-	\downarrow		
Bk	35.67	\perp	\downarrow	-	-	\downarrow		
Bl	69.44		\downarrow	-	-	\perp	•	
Bm	141.13		\downarrow	-	-		\downarrow	

 Table S2
 Effects of protonation on surface OH stretching of RL

 α . Numbers in circles are the label numbers in Fig. 3-b.

β. Behavior of bands expressed as:

•: Present in (Ba) or appeared; [⊥]: Disappeared; -: Unchanged relative to previous spectrum ↑: Increased relative to previous spectrum; ↓: Decreased relative to previous spectrum Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2012

	Hads (protons/nm ²) -	Bands (cm ⁻¹)						
Spectra		• ^α	0	\mathbb{D}	C	¢	+	
		3661	3648	3491	3545	3576	3585	
Ca	-12.00	● [₿]	•	•				
Cb	-3.35	\downarrow	-	\downarrow				
Cc	-1.18	\downarrow	-	\downarrow				
Cd	0.00	\downarrow	-	\downarrow				
Ce	0.48	\downarrow	-	\downarrow				
Cf	1.18	3658	-	\downarrow	•			
Cg	3.00	\downarrow	-	\perp	1			
Ch	6.18	\downarrow	-		-	•		
Ci	9.11	\downarrow	-		\downarrow	1		
Cj	12.18	\downarrow	-		\downarrow	1		
Ck	15.03	\downarrow	-		\downarrow	\downarrow		
Cl	17.88	\perp	\downarrow		\perp	\downarrow	•	
Cm	20.46		\downarrow			\perp	\downarrow	
Cn	30.90		\downarrow				\downarrow	
Co	102.80		\downarrow				\perp	
Ср	217.04		\downarrow					

 Table S3
 Effects of protonation on surface OH stretching of G

 α . Numbers in circles are the label numbers in Fig. 3-c.

β. Behavior of bands expressed as:

•: Present in (Ca) or appeared; [⊥]: Disappeared; -: Unchanged relative to previous spectrum ↑: Increased relative to previous spectrum; ↓: Decreased relative to previous spectrum

Atom ^{<i>a</i>}	Description	q	σ	ε	Source
Н	H_2O	0.410	0	0	[1]
H_{S}	OH surface	0.425	0	0	[1]
H_B	OH bulk	0.425	0	0	[1]
Ο	H_2O	-0.820	0.31655	0.65019	[1]
О	O bulk	-1.050	0.31655	0.65019	[1]
O_S	OH surface	-0.950	0.31655	0.65019	[1]
O_B	OH bulk	-0.950	0.31655	0.65019	[1]
Fe	Fe bulk	2.100	0.33020	7.7007×10 ⁻⁶	[2]
Bond ^B		k ^β	b		
О-Н	H_2O	463700	0.100		[3-4]
O-H	OH	327465	0.100		
Bend ^{γ}		k	0		
Н-О-Н	H ₂ O	383	109.47		[3-4]
Fe-O _B -H	Bulk	251	109.47		[1]

Table S4 Potential parameters for molecular dynamics $^{\alpha}$

α. q is charge (e), σ (nm) is the finite distance at which the inter-particle Lennard-Jones potential is zero and ε (kJ/mol) is the Lennard-Jones potential well. Values of σ (nm) from R_o (Å) in CLAYFF (V_{LJ}=ε((R_{o,ij}/r_{ij})^{1/12}-2(R_{o,ij}/r_{ij})^{1/6}) were obtained as σ R_o/10/2^{1/6}. Those are from CHARMM-compatible.

 β . $k^{b'}(kJ \text{ mol}^{-1} \text{ nm}^{-2})$ is the harmonic potential constant and b (nm) is the equilibrium bond length.

 γ . k (kJ mol⁻¹ rad⁻²) is the harmonic angle potential and (deg) is the equilibrium angle.

Surface Species ^{α}	Crystallographic ⁵⁻⁶	MD	
	0.193	0.198	(110) G
-0	0.211 / 0.196	0.196	(021) G
	0.198	0.195	(001) L
	0.196, 0.196	0.200	(110) G
u-O	0.193,0.196 / 0.210,0.211	0.198	(021) G
μΟ	0.199, 0.199	0.202	(010) L
	0.199, 0.199	0.198	(001) L
	0.193, 0.196, 0.196 (µ ₃ -O)	0.196	(110) G
μ3-Ο	0.211, 0.211, 0.210 (µ _{3,I, II} -OH)	0.210	(110) G
	0.207, 0.207, 0.198	0.206	(001) L

Table S5Surface Fe-O bond lengths (nm) from MD

^{α}Surface species were labeled in detail in Fig.2

Components		Band positions (cm ⁻¹)			1 ⁻¹)	Dominant spectra	
LL	AI	3667	3625	3552	3534	Aa $(-13.86)^{\alpha}$ - Ae (18.17)	
	AII	3645	3625	3552	3534	Af (36.11) - Ai (312.99)	
	BI	3667	3626	3550	3534	Ba (-7.85) - Be (0.24)	
RL	BII	3654	3626	3550	3534	Bf (2.23) - Bk (35.67)	
	BIII	3646		3550	3534	Bl (69.44) - Bm (141.13)	
	CI	3661	3648		3491	Ca (-12.00) - Ce (0.48)	
G	CII	3658	3648	3545		Cf (1.18) - Ci (9.11)	
	CIII		3648	3576		Cj (12.18) - Cl (17.88)	
	CIV			3585		Cm (20.46) - Cp (217.04)	

 Table S6
 MCR Analysis Results of ATR-FTIR spectra (Fig. 4)

 α . Numbers in brackets were proton concentrations in unit of protons per nm².

Fig. S1 Background subtraction of ATR-FTIR and TPD spectra of evaporated different structures of FeOOH: LL (left column), RL (middle column) and G (right column). The original most alkaline spectra of synthetic LL, RL and G with each polynomial background (dash line) are plot in A, B and C. The spectra of highest temperature with each polynomial (dash line) are plot in D, E and F.

Fig. S2 ATR-FTIR spectrum of dry dialyzed LL, RL and G. No other phases can be detected.

Fig. S3 Molecular structure of (001) plane of lepidocrocite (**A**, Fe=yellow; O=red; H=black) and hydrogen bond analyzes of 5 ns MD simulations (**B-D**). The (010) plane of lepidocrocite (not shown) has only isolated hydroxyl groups.

Fig. S4 Molecular structure of (110) plane of goethite (**A**, Fe=yellow; O=red; H=black) and hydrogen bond analyzes of 5 ns MD simulations (**B-D**).

Fig. S5 Site distribution (A) (O= blue&grey for two types of μ -OH; yellow&green for two types of -OH; H=black) and hydrogen bond analyzes of 5 ns MD simulations (**B-D**) of (021) plane of G. The strongest hydrogen bonds (highlighted in **B-D**) most likely occur between one class of μ -OH sites (labeled a -OH_{2a}) and -OH (O_{1b}), as well as all -OH sites with chemisorbed water (labeled with subscript "w").

Fig. S6 MCR spectral components of LL (**A**), RL (**B**) and G (**C**) obtained from spectra of TPD experiments (Fig. 5). Corresponding concentration profiles are shown in **D-F**.