Supplementary information

Theoretical study of photo-physical properties of indolylmaleimide derivatives

ZiLong Zheng¹, Yi Zhao^{1, 2}*, Manabu Nakazono³ and Shinkoh Nanbu⁴*

¹ Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

² State Key Laboratory for Physical Chemistry of Solid Surfaces and Fujian Provincial Key Lab of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China

³ Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

⁴ Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554, Japan

Figure S1. The x-ray measured geometry of the bromo-indolylmaleimides (**IMBr**). (a) Side view (b) Top view

Figure S2. The geometry of neutral IM-Br and its anions. The left and right sides are the optimized S_0 and S_1 geometries, respectively.

Figure S3. The geometry of neutral indole-succinimide (IS) and its anions. The left and right sides are the optimized S_0 and S_1 geometries, respectively.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2012

Figure S4. Natural molecular orbitals for anions of IS.

Figure S5. Natural molecular obitals of $I^{(-)}M$. The left side is for $S_1 \leftarrow S_0$ (solid line), $S_2 \leftarrow S_0$ (dash line) and $S_3 \leftarrow S_0$ (short dot line) vertical excitations at the optimized S_0 geometry, and the right side is $S_1 \rightarrow S_0$ vertical emission at the optimized S_1 geometry.

Figure S6. Absorption spectra of **IM** (0.05 mM) in 0, 0.5 1 or 2 % triethylamine (TEA)-CH₃CN solution

Figure S7.The fluorescence excitation spectra of **IM** (10 μ M) in 0, 1, 5 or 10 % triethylamine (TEA)- CH₃CN solution

Figure S8.The fluorescence emission spectra of **IM** (10 μ M) in 0, 1, 5 or 10 % triethylamine (TEA)-CH₃CN solution.

	Excitation energy (cm ⁻¹)			
Molecule	Theoretical result		Experiment data	
	Vdz(Basis set)	Pople(Basis set)		
I ⁽⁻⁾ M-Br	23873, 31207	21958, 29189	24054	
IS	37974, 47370	37389, 46317	35780, 45583	
I ⁽⁻⁾ M	22935, 29409, 39598	24553, 25129, 35518	25209, 36973	

Table S1. The excitation energy of $I^{(-)}M$ -Br, IS and $I^{(-)}M$.

Table S2. The emission energy of $I^{(-)}M$ -Br, IS and $I^{(-)}M$.

	Emission energy(cm ⁻¹)			
Molecule	Theoretical result		Experimental data	
	Vdz(Basis set)	Pople(Basis set)		
I ⁽⁻⁾ M-Br	15556	14863	17731	
IS	33363	36491	30159	
I ⁽⁻⁾ M	18512	16509	19497	