Supplementary Information

Optically Probing Nanoemulsion Compositions

Xiaoming Zhu^a, Michael M. Fryd^a, Jung-Ren Huang^{a,†}, and Thomas G. Mason^{a,b,c,*}

^a Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles Young Dr. East, Los Angeles, CA 90077 USA.

^b Department of Physics and Astronomy, University of California-Los Angeles.

^c California NanoSystems Institute, University of California-Los Angeles.

* Corresponding author: <u>mason@chem.ucla.edu</u>

[†] Present address: Department of Physics, National Taiwan Normal University, 88 Sec. 4, Ting-Chou Rd., Taipei 116, Taiwan.

Droplet Size Characterization

We use dynamic light scattering (DLS) at 90 degrees to measure the droplet radial size distributions of the 10 cSt PDMS/SDS/H₂O oil-in-water nanoemulsions used in our experiments. All nanoemulsions have been made according to the process described in the main text and are diluted in water to a volume fraction $\approx 10^{-5}$ for the DLS measurements. From the distributions, we extract average droplet radius $\langle a \rangle$ and polydispersity. As *C* varies between 25 mM and 800 mM, $\langle a \rangle$ ranges from 20 nm to 80 nm, as shown in Supplementary Figure 1. The polydispersity is approximately 0.3 for all samples. We find that over the range of ϕ we examine in this study, there is no significant variation in $\langle a \rangle$, as has been found previously (see ref.²).

Supplementary Figure 1. For 10 cSt PDMS/SDS/H₂O oil-in-water nanoemulsions, $\langle a \rangle$ is plotted as a function of SDS surfactant concentration *C*; the droplet volume fraction is fixed at $\phi = 0.30$. The solid line is an empirical fit to $\langle a \rangle \sim C^{1/3}$. All measurements have been performed at a temperature of T = 21.0 °C.

Normalized Refractive Index Difference: Insensitivity to Nanoscale Average Droplet Radius

We have measured the normalized refractive index difference χ as a function of $\langle a \rangle$ for 10 cSt PDMS/SDS/H₂O oil-inwater nanoemulsions having fixed C = 100 mM at several different ϕ , as shown in Supplementary Figure 2. We find that, for a given ϕ , χ is effectively independent of $\langle a \rangle$, provided $\langle a \rangle < 100$ nm. Thus, at a fixed surfactant concentration, if the nanodroplets are small enough compared to the wavelength of probe light, only their volume fraction, and not their size, influences χ significantly.

Supplementary Figure 2. For 10 cSt PDMS/SDS/H₂O oil-in-water nanoemulsions, the normalized refractive index difference χ is plotted against average droplet radius $\langle a \rangle$ at fixed SDS surfactant concentration C = 100 mM for a series of different ϕ : 0.05 (\blacktriangle), 0.1 (\blacklozenge), 0.15 (\blacksquare), and 0.2 (\blacklozenge). Provided $\langle a \rangle < 100$ nm, there are only very small variations in the measured $\chi(\langle a \rangle)$, so χ is insensitive to droplet size over the range we report in the main text. All measurements have been performed at a temperature of T = 21.0 °C.