Supplementary Information

Femtosecond Fluorescence Study of Vibrational Relaxation and Cooling dynamics of UV dyes

Olivier Bräm,¹ Thomas Penfold,^{1,2,3} Andrea Cannizzo,¹* Majed Chergui¹

 Laboratory of ultrafast Spectroscopy, ISIC, Ecole Polytechnique Fédérale de Lausanne, Switzerland CH-1015
 Paul-Scherrer Institut, Swiss FEL, CH-5232 Villigen
 Laboratory of computational chemistry and biochemistry, ISIC, Ecole Polytechnique Fédérale de Lausanne, Switzerland CH-1015

Figure S1: Integrated spectral area ($M_0(t)$) of the fluorescence of PPO and pTP in cyclohexane, ethanol and dimethylformamide.

Figure S2: Transient fluorescence spectra of PPO and pTP in cyclohexane, ethanol and dimethylformamide upon 290 nm excitation and their F-C fits.

Figure S3: Fourier Transform spectra of the oscillations pattern of $M_1(t)$ from the fluorescence of PPO in CHex, EtOH and DMF.

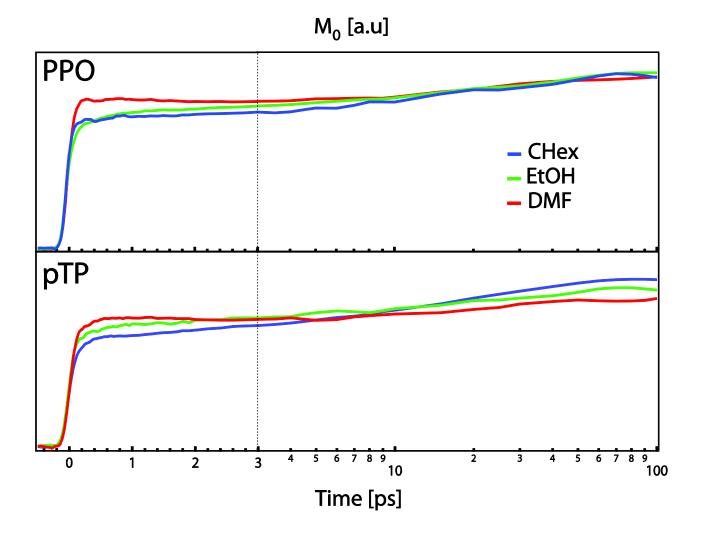

Figure S4: Fluorescence spectra of PPO and pTP in cyclohexane as a function of temperature. Zero-phonon-line and width obtained from the F-C fit.

Figure S5: Eigenvectors and frequencies of the first 8 calculated low frequency normal modes of PPO molecule.

Table S1: Calculated vibration frequencies [cm⁻¹] of 2,5-diphenyloxazole and paraterphenyl.

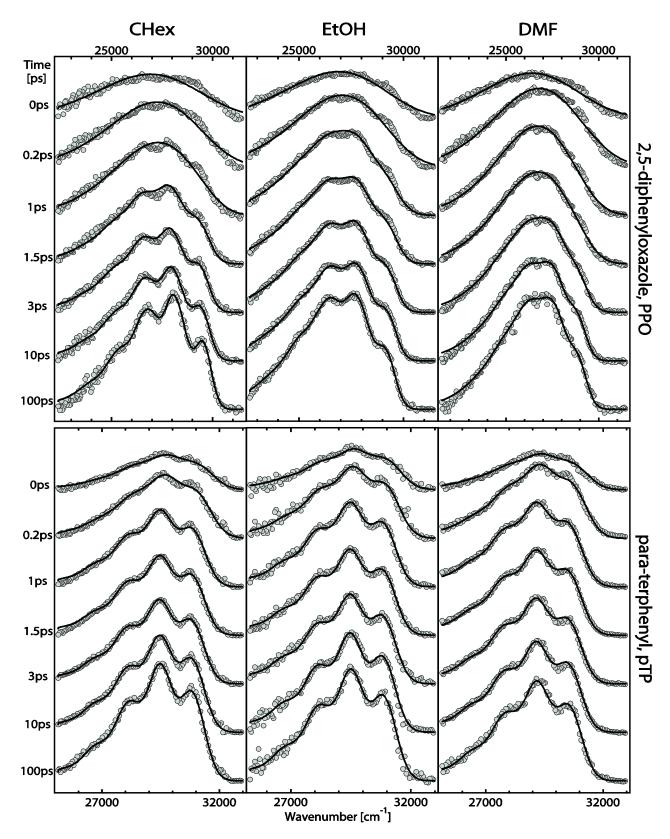
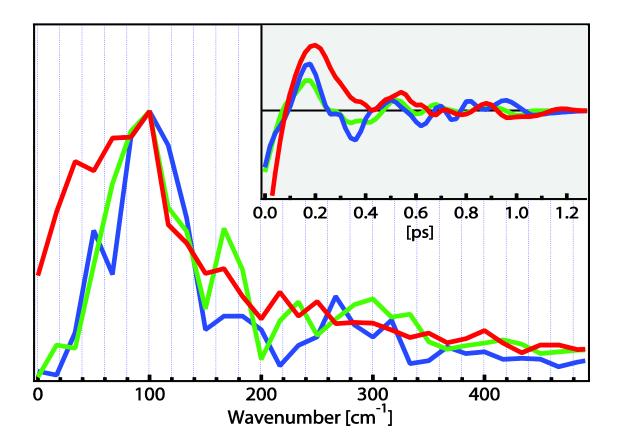
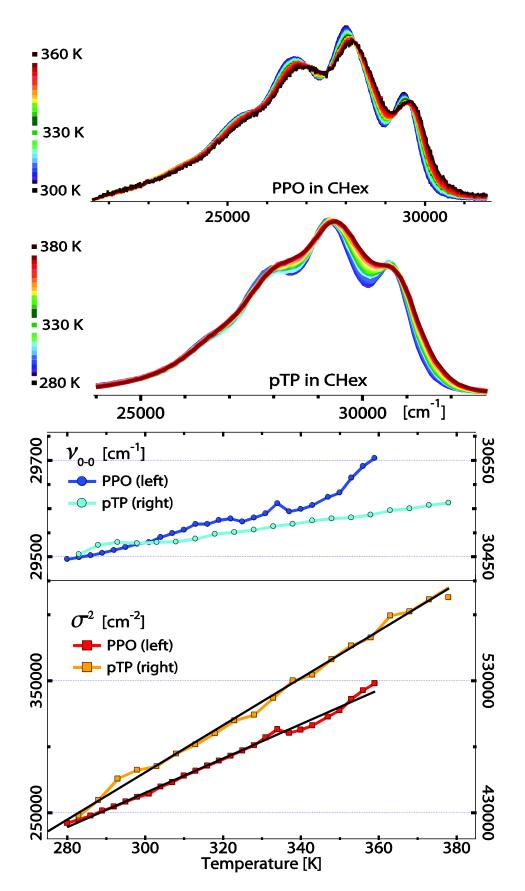

^{*} Now at the Institute of Applied Physics, University of Bern, Silderstr. 5, CH-3012 Bern, Switzerland

Figure S1: Integrated spectral area ($M_0(t)$) of the fluorescence of PPO (top) and pTP (bottom), in cyclohexane (blue), ethanol (green) and dimethylformamide (red).




Figure S2: Representative selection of transient fluorescence spectra of PPO (top) and pTP (bottom) in cyclohexane (left), ethanol (middle) and dimethylformamide (right) upon 290 nm excitation (grey circles). The black traces are the F-C fits according to eq.(1). The spectra are vertically shifted for sake of clarity.

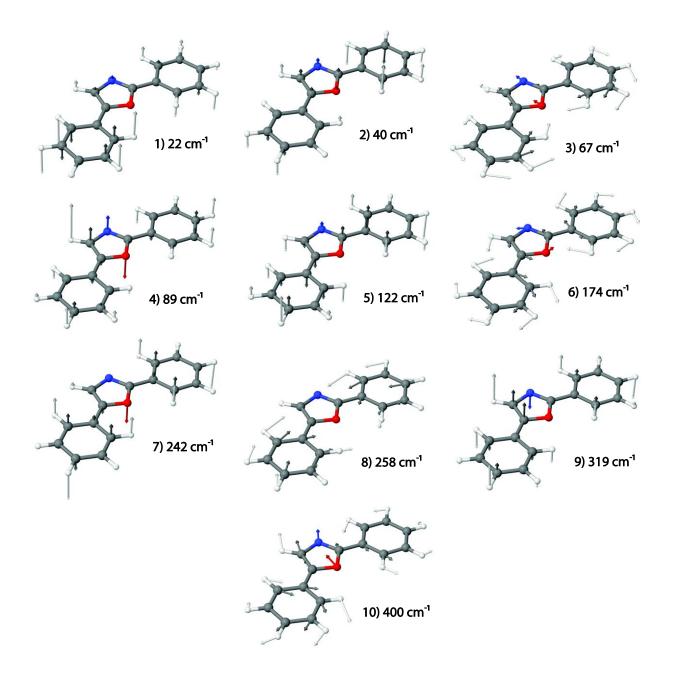

Figure S3: Fourier Transform spectra of the oscillations pattern (inset) of $M_1(t)$ from the fluorescence of PPO in CHex, EtOH and DMF.

Figure S4: Fluorescence spectra of PPO and pTP in cyclohexane as a function of temperature (top). Zero-phonon-line and width obtained from the F-C fit of the spectra as a function of temperature (bottom).

Figure S5: Eigenvectors and frequencies of the first 8 calculated low frequency normal modes of PPO molecule showing distinctive distortions: 1) torsion, 2) torsion plus out-of-plane bending, 3) and 6) in plane bending, 4) torsion plus waving, 5) waving, 6) cycles rotations, 7) torsion plus waving, 8) phenyl-oxazole-phenyl in-plane bending.

2,5-diphenyloxazole (PPO)			Paraterphenyl (pTP)		
22.197	938.7524	1539.4182	37.7187	860.5789	1345.4495
40.2357	954.2725	1582.3989	47.4843	861.0484	1355.5449
67.6381	965.8029	1619.732	69.4205	861.3511	1367.6649
89.4556	971.9922	1639.4616	87.9371	927.6518	1371.5828
122.0644	976.867	1643.289	122.7754	932.8443	1448.1141
173.5672	995.3387	1663.7843	139.0202	967.9381	1487.9403
241.6276	1001.6684	1666.3279	215.0135	969.658	1500.1635
257.5644	1016.0801	3185.0718	246.9088	971.4618	1535.0512
319.2458	1017.8459	3186.3794	297.1848	974.8939	1545.8631
400.0564	1052.3597	3192.6291	394.0119	994.9557	1570.6982
406.9497	1054.435	3196.4892	408.653	995.2094	1603.2985
410.7374	1088.8785	3202.698	416.1202	1016.3638	1635.7485
413.9902	1100.5253	3208.5221	420.6936	1016.8208	1639.8412
496.3827	1110.9995	3212.0968	422.1402	1022.3019	1660.7169
514.5934	1116.4951	3221.3173	424.9697	1027.6059	1662.3851
529.8725	1180.9504	3222.9266	526.6883	1054.0312	1669.5754
632.3677	1193.9611	3226.665	531.738	1068.2838	3180.4798
633.1824	1194.694	3276.598	584.7982	1076.2961	3180.6818
670.5191	1212.3933		625.1915	1113.1741	3185.6531
690.0808	1217.3336		631.7496	1113.6052	3187.3301
703.6642	1286.7216		634.3505	1151.9461	3187.6086
705.137	1324.5321		657.6552	1193.2208	3190.1498
717.1158	1329.3375		712.5691	1193.3584	3197.3372
725.0532	1347.6493		714.5254	1214.8069	3198.5421
777.857	1370.3619		715.091	1217.437	3201.6201
791.5841	1372.9701		739.8167	1229.9471	3203.9834
841.9122	1383.9495		772.1614	1306.4653	3206.1212
855.2303	1494.6534		787.7941	1314.256	3206.7577
863.2776	1495.7825		791.4184	1317.5643	3211.4557
923.3448	1529.9907		856.6086	1322.3169	3212.063

 Table S1: Calculated vibration frequencies [cm⁻¹] of 2,5-diphenyloxazole and paraterphenyl using Gaussian 09.