Molecular Simulation and Macroscopic Modeling of the Diffusion of Hydrogen, Carbon Monoxide and Water in Heavy n-Alkane Mixtures

Zoi A. Makrodimitri,¹ Dominik J.M. Unruh² and Ioannis G. Economou^{1,3,*}

 ¹National Center for Scientific Research "Demokritos", Institute of Physical Chemistry,
Molecular Thermodynamics and Modelling of Materials Laboratory, GR – 153 10 Aghia Paraskevi Attikis, Greece

²Shell Global Solutions International BV, PO Box 38000, 1030 BN Amsterdam, The Netherlands

³The Petroleum Institute, Department of Chemical Engineering, PO Box 2533, Abu Dhabi, UAE

*corresponding author: economou@chem.demokritos.gr

Supplementary Material

January 2012

Table	S1. Exper	iment	al values and M	1D predi	ctions at 3.4	MPa for	the 1	melt densi	ty of	the <i>n</i> -
alkane	mixtures.	The	"experimental"	density	of <i>n</i> -alkane	mixtures	was	obtained	from	linear
correla	ation of the	expe	rimental density	values o	f the pure <i>n</i> -a	lkanes.				

T (K)	Density (g/cm ³)					
	"Experimental"	% Abs Dev				
		Mixture A				
473	0.733	0.744 ± 0.002	1.5			
493	0.719	0.732 ± 0.001	1.8			
513	0.709	0.718 ± 0.002	1.3			
		Mixture B				
473	0.722	0.733 ± 0.001	1.5			
493	0.707	0.721 ± 0.001	2.0			
513	0.696	0.708 ± 0.001	1.7			
		Mixture C				
473	0.692	0.704 ± 0.002	1.7			
493	0.677	0.690 ± 0.001	1.9			
513	0.663	0.679 ± 0.001	2.4			
		Mixture D				
473	0.668	0.680 ± 0.001	1.8			
493	0.652	0.665 ± 0.001	2.0			
513	0.637	0.651 ± 0.001	2.2			
		Mixture E				
473	0.719	0.729 ± 0.001	1.4			
493	0.704	0.718 ± 0.001	2.0			
513	0.693	0.705 ± 0.001	1.7			
		Mixture F				
473	0.688	0.702 ± 0.001	2.0			
493	0.672	0.688 ± 0.001	2.4			
513	0.659	0.674 ± 0.001	2.3			
		Mixture G				
473	0.692	0.697 ± 0.001	0.7			
493	0.675	0.689 ± 0.001	2.1			
513	0.661	0.676 ± 0.002	2.3			
		Mixture H				
473	0.692	0.703 ± 0.002	1.6			
493	0.675	0.692 ± 0.001	2.5			
513	0.663	0.675 ± 0.006	1.8			

	H_2	СО	H ₂ O	
Solvent		β		VD
n-C ₈	0.0278	0.0187	0.0213	136.8
<i>n</i> -C ₁₂	0.0268	0.0141	0.0172	203.4
<i>n</i> -C ₁₆	0.0213	0.0104	0.0133	265.2
<i>n</i> -C ₂₀	0.0194	0.0102	0.0131	344.4
<i>n</i> -C ₂₈	0.0131	0.0060	0.0078	447.7
<i>n</i> -C ₆₄	0.0066	0.0025	0.0036	1034.3
<i>n</i> -C ₉₆	0.0051	0.0019	0.0027	1575.7

Table S2. Re-adjusted values of constants β and V_D in eq. (4) for H₂, CO and H₂O in various *n*-alkanes.

 β in m²·(mol/s)/cm³·K^{1/2} and V_D in cm³/mol.

Fig. S1. Simulated density of $n-C_{12} - n-C_{96}$ mixture as a function of $n-C_{12}$ mole fraction.

Fig. S2. Molecular simulation data and RHS theory correlations for the diffusivities of H_2 , CO and H_2O in (a) mixture A (close symbols) and B (open symbols), (b) mixture C (close symbols) and D (open symbols), (c) mixture E (close symbols) and F (open symbols) and (d) mixture G (close symbols) and H (open symbols).