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1 Preparation and parametrization of a coarse-grained DNA
model

1.1 Building a model
We built our coarse-grained (CG) model of DNA by representing each DNA base-pair by two
beads of the same type, where each bead is placed in the geometric center of the corresponding
atomistic base-pair nucleotide (see Fig. SI 1). The Biochemical Algorithms Library [1] was used
for this purpose.
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Fig. SI 1: Our recently developed chemically accurate coarse-grained model of the double-
stranded DNA with explicit mobile ions [2] was extensively used in this study. Each DNA base-pair
is represented by two beads, each placed in the geometric center of the corresponding atomistic nu-
cleotide. Blue dashed lines indicate effective interactions which represent a superposition of stack-
ing and base pairing among two polynucleotides [reffered to as ”fan” interactions in Eq. (SI.1)].

As elaborated below, CG DNA model was systematically derived from the all-atom (AA) MD
simulations of the corresponding atomistic systems (16-base -pair DNA oligomer in explicit sol-
vent and salt buffer, Ref. [3]), using our recently developed Molecular Renormalization Coarse-
Graining (MRG-CG) optimization technique [4, 5]. In so doing, we reproduced in CG models a
number of relevant physical observables measured (in the context of MD simulations) from exact
AA systems, to ensure the high fidelity of the local DNA interactions, as well as interactions among
ions, and DNA and ions. The main motivation for coarse-graining is the significant reduction of the
total number of degrees of freedom in original AA system by representing the atomistic nucleotide
(of 25 atoms) by a single bead (thus, 2 beads per DNA base pair) and integrating out (removing)
the water, while preserving all important aspects of DNA conformational behavior and system’s
electrostatics. In our representation, CG system was comprised of a 2-bead DNA segment and
explicit mobile ions (Na+ and Cl− ). Such a reduction, or renormalization, allowed us to increase
the size of the DNA oligomer up to 150 base pairs and address the study of a large-scale conforma-
tional dynamics of DNA at a reasonable computational cost. All types of the effective interactions
in CG systems (polymeric DNA, inter-ionic and ion-DNA interactions) have been derived with
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MRG-CG technique from a much smaller, however, detailed AA system, a 16-base-pair oligomer.
This procedure is outlined below. In this way, a larger simplified CG 150-base-pair DNA system
was extrapolated from the smaller AA 16-base-pair system by a simple replication of effective
DNA base pairs (beads) in space according to the DNA geometry and prescribing them effective
interactions extracted from the underlying atomistic model. Next, having at hand all necessary
effective potentials, one can construct CG DNA segment of an arbitrary length. For our purposes,
we have chosen 150-base-pair DNA segment whose length roughly equals the DNA’s persistence
length. It has to be noted that our CG model is averaged over DNA’s sequence, and hence, further
development is needed if sequence specific effects need to be investigated. In summary, to com-
putationally estimate DNA persistence length we followed the route: Simulating small (16 b.p.)
AA system − > Deriving the effective potentials for CG system (with MRG-CG technique) − >
Building and simulating a CG system of necessary length (150 b.p.) − > Measuring large-scale
characteristics (persistence length).

We used the following effective Hamiltonian to describe DNA chain interactions,

H = Ubond + Uang + Ufan + Uel. (SI.1)

In this expression, the first two terms indicate bond and bending angle potential energies, respec-
tively. While these contributions reflect connectivity of each DNA strand and represent intra-strand
interactions, a non-standard third term (reffered to as fan interactions) is responsible for mainte-
nance of the DNA double-strand formed by two polynucleotides. As shown in the Fig. SI 1, these
inter-strand interactions (blue dashed lines) represent a superposition of base-pairing and stacking
forces. The last term in Eq.(SI.1) corresponds to the Coulomb electrostatic interactions.

To capture a non-symmetric shape of DNA structural fluctuations (anharmonicities), we have
chosen the following polynomial forms for individual energetic contributions,

Ubond,
fan

=
4∑

α=2

Kα(l − l0)α, Uang =
4∑

α=2

Kα(θ − θ0)α, (SI.2)

where l and l0 in the first formula are fluctuating and equilibrium interparticle separations for
bond and fan interactions, respectively. θ and θ0 play analogous roles for the angular potential
in the second expression. As customary, equilibrium values l0 and θ0, as well as the initial set
of coefficients {K(0)

α }, can be obtained by fitting these polynomials to the corresponding PMFs,
extracted from AA MD simulations [6]. To obtain these, we analyzed the dynamics of the atomistic
32-base-pair DNA oligomer solvated in explicit water with added physiological NaCl salt buffer
(see previous section).

Inter-ionic interaction potentials were taken from our prior work on coarse-graining a bulk
NaCl solution [5]. Particularly, this part of CG Hamiltonian has the following functional form,

H =
∑
i>j

[
A

r12ij
+

5∑
k=1

B(k)e−C
(k)[rij−R(k)]

2

+
qiqj

4πε0εrij

]
, (SI.3)

defined by the set of parameters, {A,B(k), C(k)}, and the positions of Gaussian peaks and minima,
{R(k)}. Five Gaussian functions were introduced to account for short-range hydration effects and
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to accurately reproduce atomistic behavior of ions, while 1/r12 potential is taken to account for the
core-core inter-ionic repulsion. The last term stands for Coulomb interactions.

Finally, for the normally charged DNA system, functional forms for interaction potentials
among beads of DNA and the ions were derived from a separate series of AA MD simulations
of a system comprised of unconnected DNA backbone “monomers” (sodium dimethylphosphate)
and NaCl salt buffer [7]. This has been done in an attempt to single out a “typical” DNA-bead–ion
interaction by suppressing correlation effects caused by DNA connectivity (effects from neigh-
boring DNA beads). These correlation effects were later accounted for by adjusting Hamiltonian
parameters with MRG-CG technique (see below). Functional form for these type of effective inter-
actions is similar to inter-ionic potentials, however, with softer excluded volume interactions and
lesser number of Gaussian functions to describe hydration effects,

H =
∑
i>j

[
A

r6ij
+

3∑
k=1

B(k)e−C
(k)[rij−R(k)]

2

+
qiqj

4πε0εrij

]
. (SI.4)

As in the case of inter-ionic interactions, three Gaussian functions were introduced to account for
short-range hydration effects, while softer 1/r6 potential mimics the core-core repulsion between
DNA bead and ions.

1.2 Optimizing force field parameters using MRG-CG technique
Our optimization scheme which we call Molecular Renormalization Group Coarse-Graining (MRG-
CG) technique relies on the RG Monte Carlo method by Swendsen to compute critical exponents
in three-dimensional Ising model [8]. The MRG-CG scheme is based on representing an effective
Hamiltonian as a linear combination of N relevant dynamical observables, H =

∑N
α=1 = KαSα,

whose (various order) correlation functions, 〈Sα..Sβ〉, need to be reproduced in CG system. Hence,
a “conjugate field”, Kα, is prescribed to each observable, playing a role of a Hamiltonian force
constant, whose numerical value has to be adjusted appropriately to generate the desired system
dynamics. Because of Hamiltonian linearity, it is possible to establish a mathematical connection
between these conjugate fields and expectation values of dynamical observables in terms of the
covariance matrix of all observables,

∆〈Sα〉 = −1/(kBT )
∑
γ

[〈SαSγ〉 − 〈Sα〉〈Sγ〉]∆Kγ, (SI.5)

where ∆〈Sα〉 ≡ 〈Sα〉CG − 〈Sα〉AA is the difference between the expectation values of an observ-
able, Sα, averaged over CG and AA systems, and the ∆Kγ’s are corrections to trial CG Hamilto-
nian parameters, {K(0)

α }. A set of linear equations, Eq.(SI.5), is solved at each CG iteration until
the convergence is reached for all observables, ∆〈Sα〉 ≈ 0, α = 1..N . In this way, the process
of parameter adjustment explicitly accounts for cross-correlations among various CG degrees of
freedom – a key ingredient which is responsible for high fidelity of the local CG dynamics. For
example, as we iteratively adjust Hamiltonian parameters for the DNA bending angle potential,
we use the information of what impact of that adjustment would have on all other CG structural
degrees of freedom (for example, bond or stacking dynamical variables).
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In a recent work [4], we interpreted the MRG-CG optimization technique in light of Field
Theory [9]. Namely, Hamiltonian linearity allows us to interpret the CG partition function,

Z({K}) ∝
∑

exp

[
−1/(kBT )

N∑
α=1

KαSα

]
,

as a generating functional, whose differentiation with respect to “conjugate fields” yields the cor-
responding auto- and cross-correlation functions of physical observables,

〈S1 · · ·Sn〉 ∝
δn lnZ

δK1 · · · δKn

. (SI.6)

Since the optimization is aimed at matching these various order correlation functions in AA and
CG systems, the whole procedure is reminiscent of the central idea of RG theory. Indeed, match-
ing the correlation functions of relevant physical observables ensures a significant equivalence of
(restricted) AA and CG partition functions, by matching various order derivatives of the free en-
ergy. Additionally, an association with RG theory is strengthened by thinking of the parameter
adjustment as a “flow” in space of Hamiltonians, spanned by a set of “conjugate fields”, {Kα},
coupled to the corresponding observables.

1.3 Generalizing MRG-CG scheme.
It follows from the last equation that the MRG-CG method can be straightforwardly generalized
by demanding to reproduce not only average values (which is a requirement of the present model)
but also higher-order correlation functions of observables. Particularly, if AA and CG partition
functions generate identical sets of correlation functions of the order n and less, then the value of
n may be seen as a quantitative measure of similarity between two systems. For example, in the
case of n = 2 a set of linear equations (SI.5) will be supplemented by N(N − 1)/2 additional
(and still linear) equations aimed at matching second-order correlators ∆〈SαSβ〉 ≈ 0. The out-
lined scheme may be used to extend the current ’homopolymeric’ (averaged over sequence) DNA
model by introducing all four types of DNA nucleotides to study sequence-dependent effects. This
may be straightforwardly acheived with MRG-CG technique by reproducing not only expectation
values, but also higher-order correlation functions of various structural observables associated with
different monomeric types, to account for finer details of the underlying atomistic system on top
of the mean fieldish picture.

1.4 CG Hamiltonian as a linear combination of dynamical observables.
It follows from the structure of our CG Hamiltonian that behavior of the system is described by
a small number of observables, which may also be seen as structure-based collective order pa-
rameters. For example, according to polynomials, Eq. (SI.2), DNA bond potential energy is
described by three collective observables, Sbond1 =

∑
all bonds(l − l0)2, Sbond2 =

∑
all bonds(l − l0)3

and Sbond3 =
∑

all bonds(l − l0)4. Analogously, collective modes characterizing ion-DNA interac-

tions (ionic “shells” around DNA bead) are SGauss
α =

∑
all pairs

[
e−Cα(r−Rα)

2
]
, α = 1...3, while
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the corresponding parameters {Kα} are given by the set of constants {B(k)}, see Eq.(SI.4). As a
result, DNA behavior is associated withNDNA = 39 of structural observables (bond, angle and fan
interactions) coupled to the corresponding “conjugate fields”, {Kα}, while dynamics of the ionic
atmosphere around DNA is described by total of Nions = 2× 4 = 8 observables (4 CG degree of
freedom per interactions of DNA with Na+ and Cl− , respectively).

2 MD simulation protocol
We used the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [10] to carry
out all MD simulations. We have built 3 CG systems comprised of the 150-base-pair DNA segment
immersed in a NaCl salt buffer of different concentration: 0.1M, 0.5M and 1M, respectively. Ini-
tially the systems were minimized according to the standard steepest descent algorithm. Then they
were heated up to 300 K during the 20 ns and subsequently equilibrated for another 20 ns in a large
periodic box having dimensions ∼ 600× 600× 600 Å. Specific linear size of simulation box was
chosen to be comparable with the lenghth of a straight 150-base-pair DNA oligomer to avoid the
overlapping between neighboring periodic images. Although DNA is bent most of the time, such
overlapping is possible since the molecule visits all conformations in the course of MD simulation,
including a nearly straight conformation. We used the canonical NVT integration scheme (Nosé-
Hoover temperature thermostat) to update particles positions and velocities at each timestep [11].
The particle mesh Ewald method [12] was used to treat long-range (Coulomb) interactions. To
determine the biggest timestep we can afford to simulate CG systems with no instabilities, we used
the criteria of the total energy conservation, the latter being the energy of the CG system comple-
mented by the contribution from the Nosé-Hoover Hamiltonian [13]. It appeared that it was safe
to use the timesteps of up to 5 fs, so we used this upper limit in our MD simulations. Depending
on system’s size, the production run used for analysis varied from ∼ 0.6 µs to ∼ 1 µs, to en-
sure equilibration of ions in a large simulation box. The system’s equilibration was judged upon
convergence of various structural and conformational characteristics (bond, angle distributions for
DNA, radial distribution functions for ions, etc.) computed from different parts of the MD trajec-
tory. Additionally, equilibration of the DNA chain was assured by estimating correlation times for
various DNA conformational modes, as elaborated below.

Note, it would also be beneficial to study DNA flexibility at even higher ionic concentrations,
c > 1 M, and compare our computational results to experimental data. For example, there exist
few experimental points for DNA persistence length measured at NaCl concentrations in a range
of [1-4] M (see Fig. 2a of the main text). However, as mentioned in the manuscript, simulating
a 150-base-pair DNA segment in 1M of NaCl already poses quite a challenge because of a large
number of explicit mobile ions and long equilibration times required. For example, the number
of Na+ and Cl- ions corresponding to 2M, 3M and 4M in a simulation box having dimensions
∼ 600× 600× 600 Å would be, respectively, 400 000, 600 000 and 800 000. Our experience tells
that simulating such systems for a few hundreds of nanoseconds demands [300 000 - 600 000]
CPU hours using 2.3 GHz Intel processors, which is equivalent to [3 - 6] months of physical time
carrying out calculations in parallel regime on 128 CPUs. Therefore, DNA flexibility in this work
was studied at ionic concentrations not exceeding 1 M. Nevertheless, a majority of experimental
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data, to which our computational results were compared, fall in a range [0.1 - 1] M of NaCl
concentrations.

3 Estimating correlation times for DNA conformational modes
In the main text, Eq.(2), we introduced the following temporal correlation functions,

Ci(t) =
〈
cos[∆αi(t)]

〉
, ∆αi ≡ αi(0)− αi(t), (SI.7)

defining how orientational correlation among two tangent vectors separated by i DNA segments
along the chain decays with time [αi(0) and αi(t) being the angles between the vectors measured
at times 0 ant t, respectively]. These functions are shown in the Fig. SI 2 for simulated systems
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Fig. SI 2: Correlation functions, Eq.(SI.7), computed for tangent vectors separated by (top-down):
0, 2, 4, 6, 8, 10 and 12 DNA segments along the chain, for DNA oligomer in 0.1M and 1M NaCl
salt buffers.

of DNA segment immersed in a 0.1M and 1M NaCl salt buffer. Correlation times, τ i, can be
readily estimated from the visual analysis of correlation functions and turned out to be in a range
of ∼ [1− 2] ns for all DNA modes. As mentioned in the main text, we followed the empirical rule
that the longevity of MD trajectory needs to be no less than 500τmax ' [0.5 − 1] µs to ensure a
good statistics while calculating DNA persistence length via Eq.(1) (see the main text).
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