Electronic Supporting Information

Cucurbit[8]uril-stabilized charge transfer complexes with Diquat driven by pH: A SERS Study

María L. Roldán^{*a}, Santiago Sanchez-Cortes^a, José V. García-Ramos^a and Concepción Domingo^{*a}

Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain. Fax: +34915645557; Tel: +34 915616800; E-mail: lorena@iem.cfmac.csic.es, cdomingo@iem.cfmac.csic.es Fig. 1. UV-visible absorption spectra at pH=2, 7 and 11 of (a) Ag colloid aggregated with 0,01M KNO₃, and the same Ag colloid solution with (b) 10⁻⁶M CB[8] and (c) 10^{-5} M/10⁻⁶M DQCB[8]. TEM micrographies of (a) Ag NPs, (b) Ag NPs functionalized by CB[8] and (c) Ag NPs functionalized by DQCB[8]. The λ_{SPR} =405-407 nm and the NPs size of the Ag colloid is in accord with our previous studies¹.

Fig. 2. (a) UV-visible absorption spectra of DQ at 10^{-5} M concentration in aqueous solution (a) at different pHs 30 minutes after pH was adjusted and (b) at pH=10 for repeated intervals during 12 hours.

The influence of pH on the UV-visible spectra of a diluted solution of DQ in absence of CB[8] can be seen on **Fig. 2a**. A sequential decrease of DQ⁺² characteristic absorption band at λ_{max} = 308 nm can be clearly observed. Also, at pH=11 and 12 a band located at 372 nm appears. In **Fig. 2b** no changes on the electronic spectra for DQ can be seen up to 12 hours. This fact suggests that the CT bands observed for DQCB[8] complex are a consequence of the presence of CB[8].

Fig. 3. Absorption spectra for DQ at 10^{-5} M concentration in aqueous solution with increasing concentrations of CB[8] at (a) pH=2, and (b) pH=11, 30 minutes after host and guest were in contact. Arrows indicate isosbestic points.

The DQCB[8] complex formation in aqueous solution at acidic and alkaline pH was confirmed by isosbetic points observed at 329 nm at pH=2 and at 333 nm at pH=11. Also, a second isosbestic point at 279 nm can be seen at alkaline pH, indicating that more than one type of complex can be formed at this pH. A bathocromic shift of the maximum absorption (λ_{max}) from 308 nm to 311 nm with a concomitant intensity decreasing confirmed that DQ is encapsulated by CB [8] at both acidic and alkaline pH.

Fig. 4. Host-guest ratio: Job's plot

The stoichiometry of DQCB[8] complexes at acidic and alkaline pH were investigated by Job's plot. **Fig. 4** shows Job's plots at (a) pH=2 evaluated by absorbance changes at 330 nm and (b) pH=11 evaluated by absorbance changes at 335 nm (triangle) and 272 nm (circle). It can be deduced that lowering pH binary 1:1 complexes can be formed whereas 2:1 ternary complexes can be formed when pH increase.

Fig. 5. Influence of DQ concentration and pH on the UV-visible absorption of DQCB[8] at a fixed concentration of CB[8] (10^{-6} M). Fig. 4 shown the absorbance at 495 nm for (a) DQ and (b) DQCB[8] at pH=7, pH=10 and pH=12 with a DQ concentration of 3.10^{-5} M (triangle), 5.10^{-5} M (circle) and 1.10^{-4} M (square).

In **Fig. 2a** and **2b** it was observed that for 10^{-5} M DQ aqueous solution at pH=10 and during 12 hours no CT bands can be seen in the spectra. However, as can be seen at **Fig. 5a**, higher concentrations of DQ (3.10^{-5} M, 5.10^{-5} M and 1.10^{-4} M) give rise to weak CT bands in the electronic spectra. Clearly visible red color solutions are observed in a shorter time at pH=12 with higher DQ concentration (1.10^{-4} M). The addition of CB[8] to the guest leads to notably higher absolute absorbance values, in comparison with a DQ solution without CB[8] at the same concentration and pH. Results evident that, higher pH and guest concentrations provide higher dimerization of the radical cation inside CB[8] cavity. Also, the radical cation dimer within CB[8] seems to be more stable in time at pH=10 than at pH=12.

Fig. 6. SERS and SERRS spectra of DQCB[8] on Ag colloid at pH=2, 7 and 11 obtained from (a) an aliquot of the 10^{-6} M CB[8] solution plus an aliquot of the 10^{-5} M DQ solution and (b) an aliquot of the 10^{-5} M/ 10^{-6} M DQCB[8] complex solution.

Vibrational data analysis

Table 1. Observed bands (cm⁻¹) for the Raman and SERS (λ_{exc} =532nm) spectra of DQ guest and their assignment based on previous authors².

Raman ^a		SERS			A gaignmont ^b
Solid	Aqueous 0.5M	pH=2	pH=7	pH=11	Assignment
3085 w					v(CH)
3059 w	3104 w				v(CH)
2916 m	2968 vw	2939 w	2933 m	2932 m	$v_{s}(CH_{2})$
1613 s	1617 s	1613 w	1614 w	1611 w	v _{ring} 8a
1579 m	1584 m	1581 vs	1581 vs	1581 vs	$v_{ring} + v(C=N)$
1529 m	1533 m	1526 w	1533 w	1530 w	$v_{ring} + \delta(CH)$
1460 vw	1451 vw	1459 w	1466 w	1456 w	δ(CH ₂)
1431 w	1440 vw		1441 w	1443 w	δ(CH)
1393 w	1387 w	1387 w	1384 w	1382 w	$\nu_{ring} + \delta(CH) + t_w(CH_2)$
1326 s	1322 s	1319 m	1321 m	1318 s	$v(C-C)_{ir}$
1288 w	1290 w	1292 m	1289 m	1290 s	$\nu_{ring} + \delta(CH) + t_w(CH_2)$
1233 w	1236 w	1240 w	1239 w	1240 w	ω(CH ₂)
1194 m	1196 m	1186 s	1186 s	1186 m	$v(H_2C-N) + \delta(CH)$
1174 w		1162 sh	1168 sh	1172 sh	$v_{ring} + \delta(CH)$
1155 vw		1145 w	1145 w	1154 sh	$v_{ring} + \delta(CH)$
1073 w	1072 w	1079 m	1078 m	1078 m	$\delta_{ring} + \delta(CH)$
		1069 sh	1068 sh		$\delta_{\text{ring}} + \delta(\text{CH})$
		1048 w	1043 w	1042 w	$\delta_{ring} + \delta(CH)$
998 w	999 w	1002 w	1002 w	1002 w	$\nu(H_2C-CH_2) + \gamma(CH)$
739 w	736 w	736 w	736 w	736 w	δ_{ring}
544 w	550 w	555 vw	553 vw		$\delta_{ring} + \gamma(CH)$
	538 w				γ(CH)
			481 w	481 w	δ_{ring}
450 vw	454 vw	441 w	443 w	440 w	γ(CH)
404 vw	394 vw	397 w	395 w	397 w	$ au_{ m ring}$

^a vs: very strong; s: strong; m: medium; w: weak, vw: very weak; sh: shoulder.

^b ν, stretching; δ, in plane deformation; γ, out of plane deformation; t_w , twisting; ω , wagging; τ, torsion; ir: inter-ring; s: symmetric, a: antisymmetric.

References

- 1. M. V. Cañamares, J. V. Garcia-Ramos, J. D. Gomez-Varga, C. Domingo, S. Sanchez-Cortes. *Langmuir*, 2005, **21**, 8546.
- M. R. López-Ramírez, L. Guerrini, J. V. García-Ramos and S. Sanchez-Cortes, *Vib. Spect.*, 2008, 48, 58.