Supplementary material

Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: A

computational investigation

Jie-Jie Chen¹, Wen-Wei Li¹, Xue-Liang Li^{2,*}, Han-Qing Yu^{1,*}

¹Department of Chemistry, University of Science & Technology of China, Hefei,

230026, China

²School of Chemical Engineering, Hefei University of Technology, Hefei, 230009,

China

*Corresponding authors:

Prof. Xue-Liang Li, E-mail: lixuel987@163.com;

Prof. Han-Qing Yu, E-mail: hqyu@ustc.edu.cn

The following is included as additional supporting materials for this paper:

Table S1 Thermodynamic parameters of Step 2 at ambient temperature (298.15 K) and atmosphere pressure (1 atm), including changes of standard Gibbs free energy (ΔG_2^{Θ}) , enthalpy (ΔH_2^{Θ}) and entropy (ΔS_2^{Θ})

System	ΔG_2^{Θ}	ΔH_2^{Θ}	ΔS_2^{Θ}
	(kJ/mol)	(kJ/mol)	(J/mol·K)
[ammim]BF4	109.35	162.27	177.52
[aemim]BF ₄	148.30	212.91	216.73
[apmim]BF4	128.18	196.71	229.84
[abmim]BF4	40.69	122.70	275.03
[aamim]BF ₄	48.97	97.88	164.06
[ahmim]BF ₄	10.44	94.50	281.94

Table S2 Kinetic properties of Step 1 for AIILs capturing CO₂ at ambient temperature (298.15 K) and atmosphere pressure (1 atm), including activation energy (E_a), standard thermodynamic properties of activation ($\Delta^{\pm}G^{\Theta}$, $\Delta^{\pm}H^{\Theta}$, $\Delta^{\pm}S^{\Theta}$) and rate constants of absorption reaction (k)

System	E_{a}	$\Delta^{\!\neq} G^\Theta$	$\Delta^{\not=} H^\Theta$	$\Delta^{\neq}S^{\Theta}$	k
	(kJ/mol)	(kJ/mol)	(kJ/mol)	(J/mol·K)	$(\mathrm{mol}^{1-n}/\mathrm{L}^{1-n}\cdot\mathrm{s})$
[ammim]BF ₄	97.136	6.62	-108.45	-385.96	1.12×10^{-24}
[aemim]BF ₄	146.892	11.05	-117.32	-430.55	1.00×10^{-35}
[apmim]BF4	166.795	81.76	-71.36	-513.56	1.51×10^{-43}
[abmim]BF4	28.150	92.17	-28.82	-405.79	1.26×10^{-13}
[aamim]BF4	189.100	7.43	-106.88	-383.38	1.18×10^{-40}
[ahmim]BF4	74.412	-42.47	-208.56	-557.06	1.23×10^{-29}

Table S3 Diffusion coefficient (D) of cations, anions and CO_2 in the AIIL-CO₂

System		Linear regression equation	R^2	D
				$(10^{-7} \text{ cm}^2/\text{s})$
[ammim]BF ₄	Cation	y = 0.0072x + 0.5678	0.9315	1.2
	Anion	y = 0.0126x + 0.5676	0.9818	2.1
	CO_2	y = 0.0396x + 0.8153	0.9881	6.6
[aemim]BF ₄	Cation	y = 0.0255x + 0.4386	0.9777	4.2
	Anion	y = 0.0259x + 0.9606	0.9797	4.3
	CO_2	y = 0.0916x + 1.5011	0.9838	15.3
[apmim]BF ₄	Cation	y = 0.0283x + 0.2582	0.9966	4.7
	Anion	y = 0.0228x + 0.6409	0.9880	3.8
	CO_2	y = 0.0620x + 1.8432	0.9821	10.3
[abmim]BF ₄	Cation	y = 0.0203x + 0.2571	0.9945	3.4
	Anion	y = 0.0230x + 0.5565	0.9892	3.8
	CO_2	y = 0.0710x + 0.5188	0.9839	11.8
[aamim]BF ₄	Cation	y = 0.0119x + 0.3201	0.9541	2.0
	Anion	y = 0.0168x + 0.5092	0.9498	2.8
	CO_2	y = 0.0450x + 1.6793	0.9832	7.5
[ahmim]BF ₄	Cation	y = 0.0107x + 0.5559	0.9517	1.8
	Anion	y = 0.0168x + 0.8253	0.9596	2.8
	CO_2	y = 0.0276x + 1.3549	0.9216	4.6

systems at ambient temperature (298 K) and atmosphere pressure (1 atm)

Figure S1. Standard Gibbs free energy of Step 2 (ΔG_2^{Θ}) as a function of temperature in a range of 200-1000 K. The desorption of CO₂ has an increasing priority over Step 2 with the increasing temperature

Figure S2. Relationship between log(MSD) and log(t) for the AIIL-CO₂ systems: a. [ammim]BF₄-CO₂, b. [aemim]BF₄-CO₂, c. [apmim]BF₄-CO₂, d. [abmim]BF₄-CO₂, e. [aamim]BF₄-CO₂, and f. [ahmim]BF₄-CO₂

Figure S3. Center-of-mass radial distribution functions (RDFs) of AIIL-CO₂ systems: a. [ammim]BF₄-CO₂, b. [aemim]BF₄-CO₂, c. [apmim]BF₄-CO₂, d. [abmim]BF₄-CO₂, e. [aamim]BF₄-CO₂, and f. [ahmim]BF₄-CO₂