## **Electronic Supplementary Information**

## Sulfur Dioxide Adsorption and Photooxidation on Isotopically-Labeled Titanium Dioxide Nanoparticle Surfaces: Roles of Surface Hydroxyl Groups and Adsorbed Water in the Formation and Stability of Adsorbed Sulfite and Sulfate

Charith E. Nanayakkara<sup>1</sup>, John Pettibone<sup>1, 2</sup> and Vicki H. Grassian<sup>1, 2</sup>\*

Departments of Chemistry<sup>1</sup> and Chemical and Biochemical Engineering<sup>2</sup> University of Iowa, Iowa City, IA 52242



**Figure S1.** Transmission FTIR spectra of the spectral region of  $1800 - 800 \text{ cm}^{-1}$  overnight evacuated (at 400  $^{0}$ C) TiO<sub>2</sub> surface as a function of increasing pressure of SO<sub>2</sub>. Spectra labeled "gas phase subtracted" were recorded in the presence of the gas phase at initial pressures of 10, 20, 30, 40, 50, 70, 100, and 200 mTorr. The spectrum labeled "gas phase evacuated" was collected after evacuation of SO<sub>2</sub> at the highest pressure.



**Figure S2.** Transmission FT-IR spectra for (a)  $H_2O$  (b)  $D_2O$  (c)  $H_2^{18}O$  adsorption on TiO<sub>2</sub> surface as a function of increasing relative humidity (0.6, 1.2, 3.1, 10, 26, 56 and 76 %). Spectra were recorded in the presence of gas phase and gas phase was subtracted out.