SUPPORTING INFORMATION

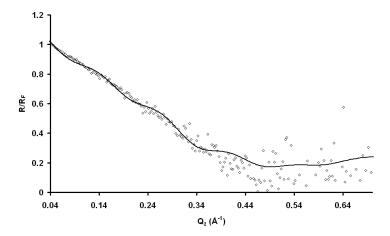


Figure 1: X-ray reflectivity profile (displayed as R/R_F vs Q_z) for the EtAN - air interface. The solid line represents the modeled x-ray reflectivity fit using the Chebyshev routine.

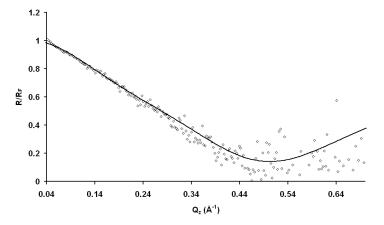
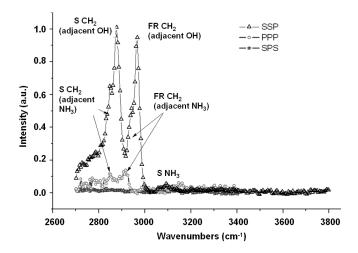



Figure 2: X-ray reflectivity profile (displayed as R/R_F vs Q_z) for the EtAN - air interface. The solid line represents the modeled x-ray reflectivity fit using the slices routine.

Figure 3: VSFS spectra for the SSP, PPP, and SPS polarisations of the EtAN – air interface in the CH, NH, and OH region.

Equation 1: Capillary wave roughness of a liquid surface

$$\sigma^2 = \frac{k_B T}{2\pi\gamma} \ln \left(\frac{q_{\text{max}}}{q_{\text{min}}} \right)$$

where k_B is Boltzmann's constant, T is the temperature, γ is the surface tension of the liquid, $q_{max} = (2\pi/D)$ and D is molecular diameter (0.54nm), and $q_{min} = (2\pi/\lambda)\Delta\beta\sin\theta$ and $\Delta\beta$ is the angular acceptance of the detector.