Supplementary Information for

Rotational Dynamics of Thiocyanate Ions in Highly Concentrated Aqueous Solutions

Heejae Kim,¹ Sungnam Park,^{1,2*} and Minhaeng Cho^{1,2,*}

¹Department of Chemistry, Korea University, Seoul 136-701, Korea.

²Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea.

In this Online Supplementary Information, we present the original FTIR spectra of the sample solutions, all the measured dispersive IR pump-probe signals, calculated hydrodynamic radius of $S^{13}CN^{-}$ ion at different potassium thiocyanate concentrations, and previously reported viscosities of KSCN in H₂O solutions.

Figure S1. The background-corrected FTIR spectra of sample solutions without intensity normalization. Figure 2 in the main text is obtained by normalizing the absorbance of the $S^{13}CN$ band.

Figure S3. Hydrodynamic radius (R_{hyd}) of $S^{13}CN^{-}$ ion is calculated by using the DSE (Debye-Stokes-Einstein) equation with the rotational relaxation times obtained from the IR pump-probe signals measured at $\omega_{pr}^{*} = 1982 \text{ cm}^{-1}$ at different potassium thiocyanate concentrations. The hydrodynamic radius of $S^{13}CN^{-}$ ion appears to be independent of the concentration of potassium thiocyanate in D₂O. For the calculation of R_{hyd} , the viscosity of KSCN in H₂O reported in *J. Solution Chem.*, **21**, 1115-1129 (1992) is used.

Figure S4. Viscosity of KSCN in H_2O as a function of the KSCN concentration. The following graph is reconstructed by using the experimental results reported in *J. Solution Chem.*, **21**, 1115-1129 (1992).

